示例#1
0
class AlgoOrder(pywingchun.AlgoOrder):
    registry = {}

    __params_schema__ = None
    __status_schema__ = None

    def __init__(self, **kwargs):
        order_id = kwargs.pop("order_id", 0)
        self.sender_uid = kwargs.pop("sender_uid", 0)
        self.active_orders = {}
        self.active = False
        pywingchun.AlgoOrder.__init__(self, order_id)
        self.subject = Subject()

    def __init_subclass__(cls, **kwargs):
        super().__init_subclass__(**kwargs)
        cls.registry[cls.__name__] = cls

    def __repr__(self):
        return '%s(%r,%r)' % (self.__class__, self.params, self.status)

    @classmethod
    def types(cls):
        return list(cls.registry.keys())

    def dumps(self):
        dct = {
            "order_id": self.order_id,
            "sender_uid": self.sender_uid,
            "algo_type": self.type,
            "status": self.status,
            "params": self.params,
            "active": self.active
        }
        return json.dumps(dct)

    @classmethod
    def create(cls, type, **kwargs):
        return cls.registry[type](**kwargs)

    def on_start(self, ctx):
        self.active = True

    def on_stop(self, ctx):
        self.active = False

    def on_modify(self, ctx, msg):
        raise NotImplementedError

    def on_child_trade(self, ctx, trade):
        raise NotImplementedError

    def on_child_order(self, ctx, order):
        if self.active:
            order_id = order.order_id
            if order_id in self.active_orders:
                pass

    def on_quote(self, ctx, quote):
        raise NotImplementedError

    def on_order_report(self, ctx, report_msg):
        raise NotImplementedError

    @property
    def type(self):
        return self.__class__.__name__

    @property
    def sent(self):
        return self.order_id > 0

    def send_notice(self):
        print("send notice .......")
        self.subject.on_next(self)
class StateManagement(metaclass=Singleton):
    def __init__(self):
        self.initRequest = Subject()
        self.addSegmentConfigRequest = Subject()
        self.removeSegmentConfigRequest = Subject()
        self.updateSegmentConfigRequest = Subject()
        self.generateManipulatorRequest = Subject()
        self.updateTensionsRequest = Subject()
        self.computeStateRequest = Subject()
        
        segment_config_repo_op = ops.merge(
            self.initRequest.pipe(
                ops.map(Repo().publish_init_segments_config)
            ),
            self.addSegmentConfigRequest.pipe(
                ops.map(Repo().add_segment)
            ),
            self.removeSegmentConfigRequest.pipe(
                ops.map(Repo().remove_segment)
            ), 
            self.updateSegmentConfigRequest.pipe(
                ops.map(Repo().update_segment_config)
            )
        )
        self._segment_configs_stream = Observable().pipe(
            segment_config_repo_op,
        )
        
        # TODO
        self._segment_configs_err_stream = Observable().pipe(
            segment_config_repo_op,
            ops.flat_map(lambda x: Observable.just(Repo().get_error()))
        )
        
        self._tension_inputs_stream = Observable().pipe(
            ops.merge(
                self.generateManipulatorRequest.pipe(
                    ops.map(Repo().generate_manipulator)
                ),
                self.updateTensionsRequest.pipe(
                    ops.map(Repo().updateTensions)
                ),
            )
        )
        
        compute_state_result = self.computeStateRequest.pipe(
            ops.map(Repo().computeTensions)
        )
        
        self._text_result_stream = compute_state_result.pipe(
            ops.map(format_manipulator)
        )
        
        self._graph_stream = compute_state_result.pipe(
        )
        
    def request_init_segment_configs(self):
        self.initRequest.on_next(0)
        
    def request_add_segment_config(self):
        self.addSegmentConfigRequest.on_next(0)
        
    def request_remove_segment_config(self, key):
        self.removeSegmentConfigRequest.on_next(key)
        
    def request_update_segment_config(self, config):
        self.updateSegmentConfigRequest.on_next(config)
        
    def request_generate_manipulator(self):
        self.generateManipulatorRequest.on_next(0)
        
    def request_update_tensions(self, tensions):
        self.updateTensionsRequest.on_next(tensions)
        
    def request_compute_state(self):
        self.computeStateRequest.on_next(0)
    
    @property
    def segment_configs_stream(self):
        return self._segment_configs_stream
    
    @property
    def segment_configs_err_stream(self):
        return self._segment_configs_err_stream
    
    @property
    def tension_inputs_stream(self):
        return self._tension_inputs_stream
    
    @property
    def graph_stream(self):
        return self._graph_stream
    
    @property
    def text_result_stream(self):
        return self._text_result_stream
        
    def __del__(self):
        for v in self.__dict__.values():
            if isinstance(v, Subject):        
                v.dispose()
示例#3
0
import rx
from rx.subject import Subject, AsyncSubject, BehaviorSubject, ReplaySubject

# Subject同时是Observer和Observable

print('--------Subject---------')
subject = Subject()
subject.on_next(1)
subject.subscribe(lambda i: print(i))
subject.on_next(2)
subject.on_next(3)
subject.on_next(4)
subject.on_completed()

# ReplaySubject会缓存所有值,如果指定参数的话只会缓存最近的几个值
print('--------ReplaySubject---------')
subject = ReplaySubject()
subject.on_next(1)
subject.subscribe(lambda i: print(i))
subject.on_next(2)
subject.on_next(3)
subject.on_next(4)
subject.on_completed()

# BehaviorSubject会缓存上次发射的值,除非Observable已经关闭
print('--------BehaviorSubject---------')
subject = BehaviorSubject(0)
subject.on_next(1)
subject.on_next(2)
subject.subscribe(lambda i: print(i))
subject.on_next(3)
示例#4
0
文件: axis.py 项目: chstan/daquiri
class Axis:
    """
    Representation of an axis which can read values or write values.

    Axes have fixed schema: in this sense, you can always expect to receive the same shape data
    back from the axis. In most cases, axes record single points, but you can produce any Python
    primitive, as well as `np.ndarray`s and `pd.DataFrame`s if it is appropriate.

    See also the schema module for type hinting Arrays.

    Axes are fundamentally asynchronous, since they represent actual hardware resources that exist over I/O.
    Additionally, measurements may take finite time, and in the case of event stream axes, you may not know
    when values will be produced.
    """

    raw_value_stream: Optional[Subject]
    _type_def: TypeDefinition

    async def shutdown(self):
        raise NotImplementedError

    def collect_state(self):
        return None

    def receive_state(self, state):
        pass

    def append_point_to_history(self, point):
        self.collected_xs.append(point["time"])
        self.collected_ys.append(point["value"])

    def reset_history(self):
        self.collected_xs = []
        self.collected_ys = []

    def __init__(self, name: str, schema: type):
        self.name = name
        self.schema = schema
        self._type_def = TypeDefinition.from_type(schema)

        self.raw_value_stream = Subject()

        # for scalar schemas we can provide a stream of values
        if schema in (float, int):
            self.collected_xs = []
            self.collected_ys = []
            self.raw_value_stream.subscribe(self.append_point_to_history)

    def emit(self, value):
        if self.raw_value_stream:
            self.raw_value_stream.on_next(
                {"value": value, "time": datetime.datetime.now().timestamp()}
            )

    @property
    def type_def(self):
        """
        We allow overriding this because in the case of subaxes
        the type is derived from the parent.
        """
        return self._type_def

    async def trigger(self):
        return

    async def settle(self):
        raise NotImplementedError

    # We use a two level API in order to make the code here
    # more straightforward. *_internal methods are virtual
    # and set the internal behavior for an axis
    # the high level API provides synchronous (if available)
    # and asynchronous bindings which also handle emitting
    # values for subscribers
    async def write_internal(self, value):
        raise NotImplementedError

    async def read_internal(self) -> Any:
        raise NotImplementedError

    async def sync_write_internal(self, value):
        raise NotImplementedError

    async def sync_read_internal(self) -> Any:
        raise NotImplementedError

    # in general, you do not need to implement
    # the top level methods, unless you need to control how
    # values are emitted. You should be able to implement the
    # low level API above and be a client to the high level API
    # below
    async def write(self, value):
        value = await self.write_internal(value)
        self.emit(value)
        return value

    async def read(self):
        value = await self.read_internal()
        self.emit(value)
        return value

    def sync_read(self):
        value = self.sync_read_internal()
        self.emit(value)
        return value

    def sync_write(self, value):
        value = self.sync_write_internal(value)
        self.emit(value)
        return value
示例#5
0
class Context:
    def __init__(self, config_path: str):
        deepkit.globals.last_context = self
        self.log_lock = Lock()
        self.defined_metrics = {}
        self.log_subject = Subject()
        self.metric_subject = Subject()
        self.speed_report_subject = Subject()

        self.client = deepkit.client.Client(config_path)
        self.wait_for_connect()
        atexit.register(self.shutdown)

        self.last_iteration_time = 0
        self.last_batch_time = 0
        self.job_iteration = 0
        self.job_iterations = 0
        self.seconds_per_iteration = 0
        self.seconds_per_iterations = []
        self.debugger_controller = None

        if deepkit.utils.in_self_execution():
            self.job_controller = JobController()

        self.debugger_controller = JobDebuggerController()

        def on_connect(connected):
            if connected:
                if deepkit.utils.in_self_execution():
                    asyncio.run_coroutine_threadsafe(
                        self.client.register_controller(
                            'job/' + self.client.job_id, self.job_controller),
                        self.client.loop)

                asyncio.run_coroutine_threadsafe(
                    self.client.register_controller(
                        'job/' + self.client.job_id + '/debugger',
                        self.debugger_controller), self.client.loop)

        self.client.connected.subscribe(on_connect)

        def on_log(data: List):
            if len(data) == 0: return
            packed = ''
            for d in data:
                packed += d

            self.client.job_action('log', ['main_0', packed])

        self.log_subject.pipe(buffer(interval(1))).subscribe(on_log)

        if len(deepkit.globals.last_logs.getvalue()) > 0:
            self.log_subject.on_next(deepkit.globals.last_logs.getvalue())

        def on_metric(data: List):
            if len(data) == 0: return
            packed = {}

            for d in data:
                if d['id'] not in packed:
                    packed[d['id']] = []

                packed[d['id']].append(d['row'])

            for i, v in packed.items():
                self.client.job_action('channelData', [i, v])

        self.metric_subject.pipe(buffer(interval(1))).subscribe(on_metric)

        def on_speed_report(rows):
            # only save latest value, each second
            if len(rows) == 0: return
            self.client.job_action('streamJsonFile',
                                   ['.deepkit/speed.csv', [rows[-1]]])

        self.speed_report_subject.pipe(buffer(
            interval(1))).subscribe(on_speed_report)

        p = psutil.Process()
        self.client.job_action('streamJsonFile', [
            '.deepkit/hardware/main_0.csv',
            [[
                'time', 'cpu', 'memory', 'network_rx', 'network_tx',
                'block_write', 'block_read'
            ]]
        ])

        def on_hardware_metrics(dummy):
            net = psutil.net_io_counters()
            disk = psutil.disk_io_counters()
            data = [
                time.time(),
                (p.cpu_percent(interval=None) / 100) / psutil.cpu_count(),
                p.memory_percent() / 100,
                net.bytes_recv,
                net.bytes_sent,
                disk.write_bytes,
                disk.read_bytes,
            ]
            self.client.job_action('streamJsonFile',
                                   ['.deepkit/hardware/main_0.csv', [data]])

        interval(1).subscribe(on_hardware_metrics)

    def wait_for_connect(self):
        async def wait():
            await self.client.connecting

        asyncio.run_coroutine_threadsafe(wait(), self.client.loop).result()

    def shutdown(self):
        self.metric_subject.on_completed()
        self.log_subject.on_completed()

        self.client.shutdown()

    def epoch(self, current: int, total: Optional[int]):
        self.iteration(current, total)

    def iteration(self, current: int, total: Optional[int]):
        self.job_iteration = current
        if total:
            self.job_iterations = total

        now = time.time()
        if self.last_iteration_time:
            self.seconds_per_iterations.append({
                'diff': now - self.last_iteration_time,
                'when': now,
            })

        self.last_iteration_time = now
        self.last_batch_time = now

        # remove all older than twenty seconds
        self.seconds_per_iterations = [
            x for x in self.seconds_per_iterations if (now - x['when']) < 20
        ]
        self.seconds_per_iterations = self.seconds_per_iterations[-30:]

        if len(self.seconds_per_iterations) > 0:
            diffs = [x['diff'] for x in self.seconds_per_iterations]
            self.seconds_per_iteration = sum(diffs) / len(diffs)

        if self.seconds_per_iteration:
            self.client.patch('secondsPerIteration',
                              self.seconds_per_iteration)

        self.client.patch('iteration', self.job_iteration)
        if total:
            self.client.patch('iterations', self.job_iterations)

        iterations_left = self.job_iterations - self.job_iteration
        if iterations_left > 0:
            self.client.patch('eta',
                              self.seconds_per_iteration * iterations_left)
        else:
            self.client.patch('eta', 0)

    def step(self, current: int, total: int = None, size: int = None):
        self.client.patch('step', current)
        now = time.time()

        x = self.job_iteration + (current / total)
        speed_per_second = size / (
            now - self.last_batch_time) if self.last_batch_time else size

        if self.last_batch_time:
            self.seconds_per_iterations.append({
                'diff': (now - self.last_batch_time) * total,
                'when':
                now
            })

        # remove all older than twenty seconds
        self.seconds_per_iterations = [
            x for x in self.seconds_per_iterations if (now - x['when']) < 20
        ]
        self.seconds_per_iterations = self.seconds_per_iterations[-30:]

        if len(self.seconds_per_iterations) > 0:
            diffs = [x['diff'] for x in self.seconds_per_iterations]
            self.seconds_per_iteration = sum(diffs) / len(diffs)

            iterations_left = self.job_iterations - self.job_iteration
            self.client.patch('eta',
                              self.seconds_per_iteration * iterations_left)

        self.last_batch_time = now

        if self.seconds_per_iteration:
            self.client.patch('secondsPerIteration',
                              self.seconds_per_iteration)

        self.client.patch('speed', speed_per_second)
        self.speed_report_subject.on_next([x, now, speed_per_second])

        if total:
            self.client.patch('steps', total)

    def set_title(self, s: str):
        self.client.patch('title', s)

    def set_info(self, name: str, value: any):
        self.client.patch('infos.' + name, value)

    def set_description(self, description: any):
        self.client.patch('description', description)

    def add_tag(self, tag: str):
        self.client.job_action('addTag', [tag])

    def rm_tag(self, tag: str):
        self.client.job_action('rmTag', [tag])

    def set_parameter(self, name: str, value: any):
        self.client.patch('config.parameters.' + name, value)

    def define_metric(self, name: str, options: dict):
        self.defined_metrics[name] = {}
        self.client.job_action('defineMetric', [name, options])

    def debug_snapshot(self, graph: dict):
        self.client.job_action('debugSnapshot', [graph])

    def add_file(self, path: str):
        self.client.job_action(
            'uploadFile',
            [path,
             base64.b64encode(open(path, 'rb').read()).decode('utf8')])

    def add_file_content(self, path: str, content: bytes):
        self.client.job_action(
            'uploadFile',
            [path, base64.b64encode(content).decode('utf8')])

    def set_model_graph(self, graph: dict):
        self.client.job_action('setModelGraph', [graph])

    def metric(self, name: str, x, y):
        if name not in self.defined_metrics:
            self.define_metric(name, {})

        if not isinstance(y, list):
            y = [y]

        self.metric_subject.on_next({'id': name, 'row': [x, time.time()] + y})
        self.client.patch('channels.' + name + '.lastValue', y)

    def log(self, s: str):
        self.log_subject.on_next(s)
示例#6
0
def main():
    pygame.init()

    size = 500, 500
    screen = pygame.display.set_mode(size)
    pygame.display.set_caption("Rx for Python rocks")

    black = 0, 0, 0
    background = pygame.Surface(screen.get_size())
    background.fill(black)  # fill the background black
    background = background.convert()  # prepare for faster blitting

    scheduler = PyGameScheduler(pygame)

    mousemove = Subject()

    color = "white"
    base = dirname(__file__)
    files = [
        join(base, img % color) for img in [
            "chess_rook_%s.png", "chess_knight_%s.png", "chess_bishop_%s.png",
            "chess_king_%s.png", "chess_queen_%s.png", "chess_bishop_%s.png",
            "chess_knight_%s.png", "chess_rook_%s.png"
        ]
    ]
    images = [pygame.image.load(image).convert_alpha() for image in files]

    old = [None] * len(images)
    draw = []
    erase = []

    def handle_image(i, image):
        imagerect = image.get_rect()

        def on_next(ev):
            imagerect.top = ev[1]
            imagerect.left = ev[0] + i * 32

            if old[i]:
                erase.append(old[i])
            old[i] = imagerect.copy()
            draw.append((image, imagerect.copy()))

        def on_error(err):
            print("Got error: %s" % err)
            sys.exit()

        mousemove.pipe(ops.delay(0.1 * i, scheduler=scheduler)).subscribe(
            on_next, on_error=on_error)

    for i, image in enumerate(images):
        handle_image(i, image)

    while True:
        for event in pygame.event.get():
            if event.type == pygame.MOUSEMOTION:
                pos = event.pos
                mousemove.on_next(pos)
            elif event.type == pygame.QUIT:
                sys.exit()

        if len(draw):
            update = []
            for rect in erase:
                screen.blit(background, (rect.x, rect.y), rect)
                update.append(rect)

            for image, rect in draw:
                screen.blit(image, rect)
                update.append(rect)

            pygame.display.update(update)
            pygame.display.flip()
            draw = []
            erase = []

        scheduler.run()
class WriteApi(AbstractClient):

    def __init__(self, influxdb_client, write_options: WriteOptions = WriteOptions()) -> None:
        self._influxdb_client = influxdb_client
        self._write_service = WriteService(influxdb_client.api_client)
        self._write_options = write_options
        if self._write_options.write_type is WriteType.batching:
            self._subject = Subject()

            observable = self._subject.pipe(ops.observe_on(self._write_options.write_scheduler))
            self._disposable = observable \
                .pipe(ops.window_with_time_or_count(count=write_options.batch_size,
                                                    timespan=timedelta(milliseconds=write_options.flush_interval)),
                      ops.flat_map(lambda v: _window_to_group(v)),
                      ops.map(mapper=lambda x: self._retryable(data=x, delay=self._jitter_delay())),
                      ops.merge_all()) \
                .subscribe(self._on_next, self._on_error, self._on_complete)
        else:
            self._subject = None
            self._disposable = None

    def write(self, bucket: str, org: str, record: Union[str, List['str'], Point, List['Point'], Observable],
              write_precision: WritePrecision = DEFAULT_WRITE_PRECISION) -> None:
        """
        Writes time-series data into influxdb.

        :param str org: specifies the destination organization for writes; take either the ID or Name interchangeably; if both orgID and org are specified, org takes precedence. (required)
        :param str bucket: specifies the destination bucket for writes (required)
        :param WritePrecision write_precision: specifies the precision for the unix timestamps within the body line-protocol
        :param record: Points, line protocol, RxPY Observable to write

        """

        if self._write_options.write_type is WriteType.batching:
            return self._write_batching(bucket, org, record, write_precision)

        final_string = ''

        if isinstance(record, str):
            final_string = record

        if isinstance(record, Point):
            final_string = record.to_line_protocol()

        if isinstance(record, list):
            lines = []
            for item in record:
                if isinstance(item, str):
                    lines.append(item)
                if isinstance(item, Point):
                    lines.append(item.to_line_protocol())
            final_string = '\n'.join(lines)

        _async_req = True if self._write_options.write_type == WriteType.asynchronous else False

        return self._post_write(_async_req, bucket, org, final_string, write_precision)

    def flush(self):
        # TODO
        pass

    def __del__(self):
        if self._subject:
            self._subject.on_completed()
            self._subject.dispose()
            self._subject = None

            # Wait for finish writing
            while not self._disposable.is_disposed:
                sleep(0.1)

        if self._disposable:
            self._disposable = None
        pass

    def _write_batching(self, bucket, org, data, precision=DEFAULT_WRITE_PRECISION):
        _key = _BatchItemKey(bucket, org, precision)
        if isinstance(data, str):
            self._subject.on_next(_BatchItem(key=_key, data=data))

        elif isinstance(data, Point):
            self._subject.on_next(_BatchItem(key=_key, data=data.to_line_protocol()))

        elif isinstance(data, list):
            for item in data:
                self._write_batching(bucket, org, item, precision)

        elif isinstance(data, Observable):
            data.subscribe(lambda it: self._write_batching(bucket, org, it, precision))
            pass

        return None

    def _http(self, batch_item: _BatchItem):

        logger.debug("http post to: %s", batch_item)

        self._post_write(False, batch_item.key.bucket, batch_item.key.org, batch_item.data,
                         batch_item.key.precision)

        return _BatchResponse(data=batch_item)

    def _post_write(self, _async_req, bucket, org, body, precision):
        return self._write_service.post_write(org=org, bucket=bucket, body=body.encode("utf-8"), precision=precision,
                                              async_req=_async_req, content_encoding="identity",
                                              content_type="text/plain; charset=utf-8")

    def _retryable(self, data: str, delay: timedelta):

        return rx.of(data).pipe(
            ops.delay(duetime=delay, scheduler=self._write_options.write_scheduler),
            ops.map(lambda x: self._http(x)),
            ops.catch(handler=lambda exception, source: self._retry_handler(exception, source, data)),
        )

    def _retry_handler(self, exception, source, data):

        if isinstance(exception, ApiException):

            if exception.status == 429 or exception.status == 503:
                _delay = self._jitter_delay() + timedelta(milliseconds=self._write_options.retry_interval)
                return self._retryable(data, delay=_delay)

        return rx.just(_BatchResponse(exception=exception, data=data))

    def _jitter_delay(self):
        return timedelta(milliseconds=random() * self._write_options.jitter_interval)

    @staticmethod
    def _on_next(response: _BatchResponse):
        if response.exception:
            logger.error("The batch item wasn't processed successfully because: %s", response.exception)
        else:
            logger.debug("The batch item: %s was processed successfully.", response)

    @staticmethod
    def _on_error(ex):
        logger.error("unexpected error during batching: %s", ex)

    def _on_complete(self):
        self._disposable.dispose()
        logger.info("the batching processor was dispose")
示例#8
0
class _NativeAppClient:
    def __init__(self):
        self.__rawPluginOutputStream = Subject()
        self.__connectionStatusStream = Subject()

        self.__speechStream = with_latest_from(
            self.__rawPluginOutputStream.pipe(
                map(lambda dehydratedMsgDict: rehydrateMessage(
                    dehydratedMsgDict))),
            self.__connectionStatusStream,
        ).pipe(
            map(lambda combinedTuple: {
                **combinedTuple[0],
                **combinedTuple[1]
            }),
            merge(self.__connectionStatusStream),
        )

        # TODO - need to trigger NVDA to startup, if it isn't already
        #      - first need to check if NVDA is installed + if the plugin is

        asyncio.create_task(self.__startListeningForOutput())

    @property
    def speechStream(self):
        return self.__speechStream

    # TODO - add streams for other vitals checks.
    #      - Consumer to choose frequencies?
    # - Is NVDA running?

    async def __startListeningForOutput(self):
        await self.__connectToOutputServer()

        asyncio.create_task(self.__pollForOutput())

    async def __connectToOutputServer(self):
        self.__serverConnection = None  # Remove a potential previous, broken connection

        await asyncio.sleep(_NVDA_EXPECTED_STARTUP_TIME +
                            _PADDING_FOR_NVDA_STARTUP_TIME)

        while True:
            try:
                self.__serverConnection = Client(
                    _address,
                    _authkey)  # Seems to wait ~3s before exception is raised

                self.__connectionStatusStream.on_next(
                    {OutputKeys.IS_CONNECTED: True})
                break

            except ConnectionRefusedError:  # If the listener hasn't been setup yet
                self.__connectionStatusStream.on_next(
                    {OutputKeys.IS_CONNECTED: False})

                await asyncio.sleep(0)

    async def __pollForOutput(self):
        while True:
            if self.__serverConnection and self.__serverConnection.poll():
                try:
                    dehydratedMsgDict = self.__serverConnection.recv()
                    self.__rawPluginOutputStream.on_next(dehydratedMsgDict)

                except ConnectionResetError:  # If NVDA/the plugin is terminated
                    self.__connectionStatusStream.on_next(
                        {OutputKeys.IS_CONNECTED: False})

                    await self.__connectToOutputServer()  # In case it restarts
            else:
                await asyncio.sleep(0)
示例#9
0
import rx
import rx.operators as ops
from rx.subject import Subject

first = Subject()
second = Subject()

first.pipe(ops.amb(second)).subscribe(
    on_next=lambda i: print("on_next {}".format(i)),
    on_error=lambda e: print("on_error: {}".format(e)),
    on_completed=lambda: print("on_completed")
)

first.on_next(1)
second.on_next(2)
first.on_completed()
示例#10
0
文件: stomp.py 项目: HugoSart/wstomp
class Stomp:

    def __init__(self, url):
        self.ws = WebSocket(url)

        # Stomp streams
        self.rx_status = Subject()
        self.rx_frame = Subject()
        self.rx_message = Subject()
        self.rx_receipt = Subject()
        self.rx_error = Subject()

        # Assign streams
        self.ws.rx_on_open.subscribe(on_next=self.__on_open)
        self.ws.rx_on_data.subscribe(on_next=self.__on_data)
        self.ws.rx_on_close.subscribe(on_next=self.__on_close)
        self.ws.rx_on_ping.subscribe(on_next=self.__on_ping)
        self.ws.rx_on_pong.subscribe(on_next=self.__on_pong)
        self.ws.rx_on_count_message.subscribe(on_next=self.__on_count_message)
        self.ws.rx_on_error.subscribe(on_next=self.__on_error)
        self.ws.rx_on_message.subscribe(on_next=self.__on_message)

    def transmit(self, frame: Frame):
        self.ws.send(frame.build())

    def connect(self):
        pass

    def send(self):
        pass

    def subscribe(self):
        pass

    def unsubscribe(self):
        pass

    def disconnect(self):
        pass

    def __on_open(self):
        pass

    def __on_close(self):
        pass

    def __on_data(self):
        pass

    def __on_ping(self):
        pass

    def __on_pong(self):
        pass

    def __on_count_message(self):
        pass

    def __on_error(self):
        pass

    def __on_message(self, c, message):
        self.rx_frame.on_next(Frame.parse(message))
async def _listen(websocket, path):
    async for message in websocket:
        LOGGER.debug(f"<<<< MSG_RECV: {message}")
        try:
            ipc_resolvers[message]()
        except Exception as e:
            LOGGER.error(f"Failed to process IPC Instruction ${message}", e)


def get_server():
    return websockets.serve(
        _listen,
        config.get("qt", "ipc_ws_bind_address"),
        config.getint("qt", "ipc_ws_port"),
        origins=None,
    )


def start_listener():
    LOGGER.info("Starting IPC Listener Thread")
    _el.run_until_complete(ipc_server)
    _el.run_forever()


_el = asyncio.get_event_loop()

ipc_resolvers = {"closeApplication": lambda: ipc_shutdown_event.on_next(True)}

ipc_server = get_server()
示例#12
0
class WorkQueue(object):
    def __init__(self, concurrency_per_group, description=None):
        self.scheduler = ThreadPoolScheduler(concurrency_per_group)
        self._requests = Subject()
        self._output = ReplaySubject()
        self._description = description
        self._subscription = self._requests.pipe(
            group_by(lambda r: r['concurrency_group']),
            flat_map(lambda concurrency_group: concurrency_group.pipe(
                map(lambda r: r['request']),
                merge(max_concurrent=concurrency_per_group)))).subscribe(
                    on_next=lambda request: self._output.on_next(request),
                    on_error=lambda error: logging.exception(
                        'Error in {} request stream'.format(self)),
                    on_completed=lambda: logging.error(
                        '{} request stream unexpectedly completed'.format(self
                                                                          )),
                    scheduler=self.scheduler)

    def enqueue(self,
                observable: Observable,
                group: str = None,
                retries: int = 0,
                description: str = None):
        # Provide a function returning a callable?

        description = description or str(Observable)
        key = '{}({})'.format(description, random.random())

        def log_status(status):
            logging.debug(
                str({
                    'WorkQueue': str(self),
                    'group': group,
                    'key': key,
                    status: description
                }))

        log_status('ENQUEUED')
        error: Optional[Exception] = None

        def handle_error(e):
            log_status('FAILED')
            nonlocal error
            error = e
            return of({'key': key, 'error': e})

        def throw_if_error(request):
            if error:
                return throw(error)
            else:
                return of(request)

        def extract_value(value):
            if type(value) == Observable:
                return value
            else:
                return of(value)

        request = of(True).pipe(
            do_action(lambda _: log_status('STARTED')),
            flat_map(lambda _: observable.pipe(
                flat_map(extract_value),
                map(lambda value: {
                    'key': key,
                    'value': value
                }),
                retry_with_backoff(
                    retries=retries,
                    description='{}.enqueue(group={}, description={})'.format(
                        self, group, description)),
                catch(handler=lambda e, o: handle_error(e)),
            )),
            concat(
                of({
                    'key': key,
                    'complete': True
                }).pipe(do_action(lambda _: log_status('COMPLETED')))))
        result_stream = self._output.pipe(
            filter(lambda request: request['key'] == key),
            flat_map(lambda request: throw_if_error(request)),
            take_while(lambda request: not request.get('complete')),
            flat_map(lambda request: of(request.get('value'))))
        self._requests.on_next({
            'request': request,
            'concurrency_group': group
        })
        return result_stream

    def dispose(self):
        if self._subscription:
            self._subscription.dispose()

    def __str__(self):
        return 'WorkQueue({})'.format(
            self._description) if self._description else super().__str__()
示例#13
0
def test_parent_before_source():
    source = Subject()
    parent = Subject()

    actual_value = None

    def on_next(i):
        nonlocal actual_value
        actual_value = i

    disposable = parent.pipe(rxsci.ops.with_latest_from(source), ).subscribe(
        on_next=on_next,
        on_error=lambda e: print(e),
    )

    parent.on_next(1)
    assert actual_value == None
    source.on_next('a')
    assert actual_value == None
    parent.on_next(2)
    assert actual_value == (2, 'a')
    parent.on_next(3)
    assert actual_value == (3, 'a')
    actual_value = None
    source.on_next('b')
    assert actual_value == None
    parent.on_next(4)
    assert actual_value == (4, 'b')
示例#14
0
class Trainer(object):  # type: Type[Trainer]
    def __init__(self, classifier_name='MLP'):
        super(Trainer, self).__init__()
        # Classifier initialiser
        self.classifier_name = classifier_name
        classifiers = {
            'RandomForest':
            RandomForestClassifier(n_estimators=10),
            'MLP':
            MLPClassifier(
                solver='adam',
                alpha=1,
                # hidden_layer_sizes=(100, 100, 100, 100, 100),
                verbose=True,
                shuffle=True,
                warm_start=True,
                learning_rate='adaptive',
            ),
            'SVC':
            SVC(gamma='auto'),
            'KNN':
            KNeighborsClassifier(n_neighbors=3),
            'AdaBoost':
            AdaBoostClassifier(
                n_estimators=100,
                learning_rate=0.05,
                random_state=0,
            )
        }
        self.cls = classifiers[classifier_name]
        self.pca = PCA(n_components=2)
        self._is_open = True

        # Observables and Subjects
        self.prediction = Subject()
        self.status = Subject()
        self.identifiers = Subject()

        # disposal handler
        self.subscriptions = []
        self.subscriptions.append(self.prediction)
        self.subscriptions.append(self.status)
        self.subscriptions.append(self.identifiers)

        # Training Params
        self.training_wait_time = 3
        self.recording_time = 10
        self._is_recording_data = False
        self.is_trained = False
        self._is_training = False
        self.current_training_target = None
        self.recorded_data = []
        self.samples = []
        self.targets = []
        self.accumulative_samples = []
        self.accumulative_targets = []

        # Prediction Params
        self.prediction_wait_time = 0.25
        self.current_data = []

        # Scoring Params
        self.training_summary = []

        # Prediction initialiser
        self._identifiers = []

        # self._init_thread(target=self._initialise_classifier, args=(classifier_name,))

    @staticmethod
    def _init_thread(target, args=()):
        Thread(target=target, args=args).start()

    def add_data(self, data):  # type: (Trainer, Any) -> None
        self.current_data = data
        if self._is_recording_data:
            self.recorded_data.append(data)
            self.samples.append(data)
            self.targets.append(self.current_training_target)
            self.accumulative_samples.append(data)
            self.accumulative_targets.append(self.current_training_target)
        else:
            self.predict()

    def _initialise_classifier(self, classifier_name):
        self.status.on_next('Initialising Trainer...')
        for i in range(int(len(os.listdir('./data')) / 2)):
            arm_down_data = np.load('./data/arm_down_processor_' + str(i + 1) +
                                    '.npy')
            for data in arm_down_data:
                # print(data)
                self.accumulative_samples.append(data[1])
                self.accumulative_targets.append(1)
                self.samples.append(data[1])
                self.targets.append(1)
            arm_up_data = np.load('./data/arm_up_processor_' + str(i + 1) +
                                  '.npy')
            for data in arm_up_data:
                self.accumulative_samples.append(data[1])
                self.accumulative_targets.append(0)
                self.samples.append(data[1])
                self.targets.append(0)
        # print(np.array(self.samples).shape)
        if classifier_name == 'RandomForest':
            self._init_thread(self._random_forest.__wrapped__, args=(self, ))
        elif classifier_name == 'MLP':
            self._init_thread(self._mlp.__wrapped__, args=(self, ))
        elif classifier_name == 'SVC':
            self._init_thread(self._svc.__wrapped__, args=(self, ))
        elif classifier_name == 'KNN':
            self._init_thread(self._knn.__wrapped__, args=(self, ))
        elif classifier_name == 'AdaBoost':
            self._init_thread(self._adaboost.__wrapped__, args=(self, ))

    def train(self, identifier_name):  # type: (Trainer, Any) -> None
        if self._is_open:
            for identifier in self._identifiers:
                if identifier['name'] is identifier_name:
                    self.current_training_target = identifier['target']
                    identifier['training_count'] += 1
                    self._update_identifiers()
                    break

            if self.classifier_name == 'RandomForest':
                print('RandomForest')
                self._init_thread(target=self._random_forest)
            elif self.classifier_name == 'MLP':
                print('MLP')
                self._init_thread(target=self._mlp)
            elif self.classifier_name == 'SVC':
                print('SVC')
                self._init_thread(target=self._svc)
            elif self.classifier_name == 'KNN':
                print('KNN')
                self._init_thread(target=self._knn)

    def _training(func):
        @wraps(func)
        def wrapper(self):
            if not self._is_training:
                # Set training flag and status
                identifier_name = 'arm_up'
                for identifier in self._identifiers:
                    if identifier['target'] is self.current_training_target:
                        identifier_name = identifier['name']
                        break
                self.status.on_next(
                    'Training for {0}...'.format(identifier_name))
                self._is_training = True
                sleep(self.training_wait_time)
                self.status.on_next('Recording data...')
                self.recorded_data = []
                self.samples = []
                self.targets = []
                self._is_recording_data = True
                sleep(self.recording_time)
                self._is_recording_data = False
                np.save(
                    './data/' + self.get_next_processor_label(identifier_name),
                    self.recorded_data)
                self.status.on_next('Scoring data...')
                score = self.cls.score(self.samples, self.targets)
                print('Current Score is {0}'.format(score))
                self.status.on_next('Fitting data...')
                start_time = time()
                func(self)
                training_time = time() - start_time
                print(training_time)
                print('Current Score is {0}'.format(
                    self.cls.score(self.samples, self.targets)))
                self.training_summary.append({
                    'score':
                    score,
                    'identifier_name':
                    identifier_name,
                    'time_elapse':
                    training_time,
                    'total_sample_size':
                    len(self.accumulative_samples),
                    'total_target_size':
                    len(self.accumulative_targets),
                    'classifier_name':
                    self.classifier_name
                })
                self._is_training = False
                self.status.on_next('Training Complete')

        return wrapper

    @_training
    def _random_forest(self):
        self.cls.n_estimators += 1
        self.cls.fit(self.accumulative_samples, self.accumulative_targets)
        self.is_trained = True

    @_training
    def _mlp(self):
        self.cls.fit(self.accumulative_samples, self.accumulative_targets)
        print(self.cls.loss_)
        self.is_trained = True

    @_training
    def _svc(self):
        self.cls.fit(self.accumulative_samples, self.accumulative_targets)
        self.is_trained = True

    @_training
    def _knn(self):
        self.cls.fit(self.accumulative_samples, self.accumulative_targets)
        self.is_trained = True

    @_training
    def _adaboost(self):
        self.cls.fit(self.accumulative_samples, self.accumulative_targets)
        self.is_trained = True

    def predict(self):  # type: (Trainer) -> None
        def _predict():
            if self.is_trained and not self._is_training:
                self.status.on_next('Predicting...')
                # try:
                # if self.classifier_name == 'SVC':
                #     self.pca.fit_transform(self.)
                print(np.array(self.current_data).shape)
                train_data = np.array(self.current_data).reshape(1, -1)
                prediction = self.cls.predict(train_data)[0]
                for identifier in self._identifiers:
                    if prediction == identifier['target']:
                        self.prediction.on_next(identifier['name'])
                # except:
                #     print('An error occurred on prediction, prediction not performed!')

        if self._is_open:
            self._init_thread(target=_predict)

    # State Management
    def add_identifier(self, identifier_name):  # type: (Trainer, str) -> str
        identifier = {
            'name': identifier_name,
            'target': len(self._identifiers),
            'connector_index': 0,
            'processor_index': int(len(os.listdir('./data')) / 2),
            'training_count': 0
        }
        self._identifiers.append(identifier)
        self._update_identifiers()
        return identifier_name

    def _update_identifiers(self):  # type: (Trainer) -> None
        self.identifiers.on_next(self._identifiers)

    def get_next_connector_label(
            self, identifier_name):  # type: (Trainer, Any) -> Any
        for identifier in self._identifiers:
            if identifier['name'] is identifier_name:
                identifier['connector_index'] += 1
                self._update_identifiers()
                return identifier_name + '_connector_' + identifier[
                    'connector_index']

    def get_next_processor_label(
            self, identifier_name):  # type: (Trainer, Any) -> Any
        for identifier in self._identifiers:
            if identifier['name'] is identifier_name:
                identifier['processor_index'] += 1
                self._update_identifiers()
                return identifier_name + '_processor_' + str(
                    identifier['processor_index'])

    def close(self):  # type: (Trainer) -> None
        self._is_open = False
        sleep(0.5)
        if len(self.training_summary) > 0:
            with open('./neurosky/score.json', 'r') as file:
                saved_data = json.loads(file.read())
                saved_data.append(self.training_summary)
                data_to_save = json.dumps(saved_data)
            with open('./neurosky/score.json', 'w+') as file:
                file.write(data_to_save)
        for subscription in self.subscriptions:
            try:
                subscription.dispose()
            except DisposedException:
                pass
示例#15
0
class ModbusPumpControl(SerialControl):
    serial: ModbusSerialClient

    def __init__(self, name="pump_control"):
        super().__init__(name)
        self.pump_control_config = self.config["pumpControl"]
        self.control_delay = self.pump_control_config["controlDelay"]
        self.tq = Subject()
        self.scheduler = NewThreadScheduler()
        self.update_subject = Subject()

        def on_next(job):
            try:
                job()
            except Exception as ex:
                self.logger.error(ex)

        self.tq.pipe(operators.observe_on(self.scheduler)).subscribe(
            on_next, lambda ex: self.logger.error(ex),
            lambda: self.serial.close())
        self.state = [0.0, 0.0]
        self.enable_remote_control(True)

    def create_serial_connection(self):
        self.pump_control_config = self.config["pumpControl"]
        port = self.pump_control_config["port"]
        baud = self.pump_control_config["baud"]
        timeout = self.pump_control_config["timeout"]
        client = ModbusSerialClient(method="rtu",
                                    port=port,
                                    baudrate=baud,
                                    timeout=timeout)
        client.connect()
        return client

    def enable_remote_control(self, enable=True):
        def _enable_remote_control(unit, enable=True):
            self.tq.on_next(lambda: self.serial.write_coil(
                0x1004, 1 if enable else 0, unit=unit))
            self.tq.on_next(lambda: time.sleep(self.control_delay))

        _enable_remote_control(
            self.pump_control_config["endpoint"]["slurry"]["address"], enable)
        _enable_remote_control(
            self.pump_control_config["endpoint"]["clear"]["address"], enable)

    def set_speed(self, slurry_speed, clear_speed):
        if slurry_speed is not None and slurry_speed != self.state[0]:
            self.ctrl_pump(
                self.pump_control_config["endpoint"]["slurry"]["address"],
                slurry_speed)
            self.logger.debug(f"Slurry pump speed updated: {slurry_speed}")
            self.state[0] = slurry_speed
        if clear_speed is not None and clear_speed != self.state[1]:
            self.ctrl_pump(
                self.pump_control_config["endpoint"]["clear"]["address"],
                clear_speed)
            self.logger.debug(f"Clear pump speed updated: {clear_speed}")
            self.state[1] = clear_speed

    def ctrl_pump(self, unit, speed):
        def start_pump(unit, enable=True):
            self.tq.on_next(lambda: self.serial.write_coil(
                0x1001, 1 if enable else 0, unit=unit))
            self.tq.on_next(lambda: time.sleep(self.control_delay))

        def direction(unit, direction=True):
            self.tq.on_next(lambda: self.serial.write_coil(
                0x1003, 65280 if direction else 0, unit=unit))
            self.tq.on_next(lambda: time.sleep(self.control_delay))

        def rate(unit, speed):
            buffer = struct.pack("f", math.fabs(speed))
            lb = struct.unpack("<H", buffer[0:2])[0]
            hb = struct.unpack("<H", buffer[2:4])[0]
            self.tq.on_next(lambda: self.serial.write_registers(
                0x3001, [hb, lb], unit=unit))
            self.tq.on_next(lambda: time.sleep(self.control_delay))

        # stop pump first otherwise cannot adjust direction
        start_pump(unit, False)

        rate(unit, speed)
        if speed == 0:
            return
        direction(unit, speed > 0)
        start_pump(unit, True)

    def on_command(self, x):
        assert isinstance(x, ModbusPumpControlCommand)
        self.set_speed(x.slurry_pump, x.clear_pump)
        self.update_subject.on_next(x)

    def on_subscribe(self, observer, scheduler=None):
        self.update_subject.subscribe(observer, scheduler)
示例#16
0
# 操作数据流
print('求所有偶数')
some_data = rx.of(1, 2, 3, 4, 5, 6, 7, 8)
some_data2 = rx.from_iterable(range(10, 20))
some_data.pipe(
    op.merge(some_data2),
    op.filter(lambda i: i % 2 == 0),
    # op.map(lambda i: i * 2)
).subscribe(lambda i: print(i))

# debounce操作符,仅在时间间隔之外的可以发射
print('防止重复发送')
ob = Subject()
ob.pipe(
    op.throttle_first(3)
    # op.debounce(3)
).subscribe(
    on_next=lambda i: print(i),
    on_completed=lambda: print('Completed')
)

print('press enter to print, press other key to exit')
while True:
    s = input()
    if s == '':
        ob.on_next(datetime.datetime.now().time())
    else:
        ob.on_completed()
        break