示例#1
0
def alt_to_disp(rpc1, rpc2, x, y, alt, H1, H2, A=None):
    """
    Converts an altitude into a disparity.

    Args:
        rpc1: an instance of the rpc_model.RPCModel class for the reference
            image
        rpc2: an instance of the rpc_model.RPCModel class for the secondary
            image
        x, y: coordinates of the point in the reference image
        alt: altitude above the WGS84 ellipsoid (in meters) of the point
        H1, H2: rectifying homographies
        A (optional): pointing correction matrix

    Returns:
        the horizontal disparity of the (x, y) point of im1, assuming that the
        3-space point associated has altitude alt. The disparity is made
        horizontal thanks to the two rectifying homographies H1 and H2.
    """
    xx, yy = find_corresponding_point(rpc1, rpc2, x, y, alt)[0:2]
    p1 = np.vstack([x, y]).T
    p2 = np.vstack([xx, yy]).T

    if A is not None:
        print("rpc_utils.alt_to_disp: applying pointing error correction")
        # correct coordinates of points in im2, according to A
        p2 = common.points_apply_homography(np.linalg.inv(A), p2)

    p1 = common.points_apply_homography(H1, p1)
    p2 = common.points_apply_homography(H2, p2)
    # np.testing.assert_allclose(p1[:, 1], p2[:, 1], atol=0.1)
    disp = p2[:, 0] - p1[:, 0]
    return disp
示例#2
0
def disparity_range_from_matches(matches, H1, H2, w, h):
    """
    Compute the disparity range of a ROI from a list of point matches.

    The estimation is based on the extrapolation of the affine registration
    estimated from the matches. The extrapolation is done on the whole region of
    interest.

    Args:
        matches: Nx4 numpy array containing a list of matches, in the full
            image coordinates frame, before rectification
        w, h: width and height of the rectangular ROI in the first image.
        H1, H2: two rectifying homographies, stored as numpy 3x3 matrices

    Returns:
        disp_min, disp_max: horizontal disparity range
    """
    # transform the matches according to the homographies
    p1 = common.points_apply_homography(H1, matches[:, :2])
    x1 = p1[:, 0]
    p2 = common.points_apply_homography(H2, matches[:, 2:])
    x2 = p2[:, 0]
    y2 = p2[:, 1]


    # compute the final disparity range
    disp_min = np.floor(np.min(x2 - x1))
    disp_max = np.ceil(np.max(x2 - x1))

    # add a security margin to the disparity range
    disp_min *= (1 - np.sign(disp_min) * cfg['disp_range_extra_margin'])
    disp_max *= (1 + np.sign(disp_max) * cfg['disp_range_extra_margin'])
    return disp_min, disp_max
示例#3
0
文件: rectification.py 项目: yxqd/s2p
def register_horizontally_shear(matches, H1, H2):
    """
    Adjust rectifying homographies with tilt, shear and translation to reduce the disparity range.

    Args:
        matches: list of pairs of 2D points, stored as a Nx4 numpy array
        H1, H2: two homographies, stored as numpy 3x3 matrices

    Returns:
        H2: corrected homography H2

    The matches are provided in the original images coordinate system. By
    transforming these coordinates with the provided homographies, we obtain
    matches whose disparity is only along the x-axis.
    """
    # transform the matches according to the homographies
    p1 = common.points_apply_homography(H1, matches[:, :2])
    x1 = p1[:, 0]
    y1 = p1[:, 1]
    p2 = common.points_apply_homography(H2, matches[:, 2:])
    x2 = p2[:, 0]
    y2 = p2[:, 1]

    if cfg['debug']:
        print("Residual vertical disparities: max, min, mean. Should be zero")
        print(np.max(y2 - y1), np.min(y2 - y1), np.mean(y2 - y1))

    # we search the (a, b, c) vector that minimises \sum (x1 - (a*x2+b*y2+c))^2
    # it is a least squares minimisation problem
    A = np.vstack((x2, y2, y2 * 0 + 1)).T
    a, b, c = np.linalg.lstsq(A, x1)[0].flatten()

    # correct H2 with the estimated tilt, shear and translation
    return np.dot(np.array([[a, b, c], [0, 1, 0], [0, 0, 1]]), H2)
示例#4
0
文件: rectification.py 项目: yxqd/s2p
def disparity_range_from_matches(matches, H1, H2, w, h):
    """
    Compute the disparity range of a ROI from a list of point matches.

    The estimation is based on the extrapolation of the affine registration
    estimated from the matches. The extrapolation is done on the whole region of
    interest.

    Args:
        matches: Nx4 numpy array containing a list of matches, in the full
            image coordinates frame, before rectification
        w, h: width and height of the rectangular ROI in the first image.
        H1, H2: two rectifying homographies, stored as numpy 3x3 matrices

    Returns:
        disp_min, disp_max: horizontal disparity range
    """
    # transform the matches according to the homographies
    p1 = common.points_apply_homography(H1, matches[:, :2])
    x1 = p1[:, 0]
    p2 = common.points_apply_homography(H2, matches[:, 2:])
    x2 = p2[:, 0]
    y2 = p2[:, 1]

    # compute the final disparity range
    disp_min = np.floor(np.min(x2 - x1))
    disp_max = np.ceil(np.max(x2 - x1))

    # add a security margin to the disparity range
    disp_min *= (1 - np.sign(disp_min) * cfg['disp_range_extra_margin'])
    disp_max *= (1 + np.sign(disp_max) * cfg['disp_range_extra_margin'])
    return disp_min, disp_max
示例#5
0
文件: rpc_utils.py 项目: mnhrdt/s2p
def alt_to_disp(rpc1, rpc2, x, y, alt, H1, H2, A=None):
    """
    Converts an altitude into a disparity.

    Args:
        rpc1: an instance of the rpc_model.RPCModel class for the reference
            image
        rpc2: an instance of the rpc_model.RPCModel class for the secondary
            image
        x, y: coordinates of the point in the reference image
        alt: altitude above the WGS84 ellipsoid (in meters) of the point
        H1, H2: rectifying homographies
        A (optional): pointing correction matrix

    Returns:
        the horizontal disparity of the (x, y) point of im1, assuming that the
        3-space point associated has altitude alt. The disparity is made
        horizontal thanks to the two rectifying homographies H1 and H2.
    """
    xx, yy = find_corresponding_point(rpc1, rpc2, x, y, alt)[0:2]
    p1 = np.vstack([x, y]).T
    p2 = np.vstack([xx, yy]).T

    if A is not None:
        print("rpc_utils.alt_to_disp: applying pointing error correction")
        # correct coordinates of points in im2, according to A
        p2 = common.points_apply_homography(np.linalg.inv(A), p2)

    p1 = common.points_apply_homography(H1, p1)
    p2 = common.points_apply_homography(H2, p2)
    # np.testing.assert_allclose(p1[:, 1], p2[:, 1], atol=0.1)
    disp = p2[:, 0] - p1[:, 0]
    return disp
示例#6
0
def register_horizontally_shear(matches, H1, H2):
    """
    Adjust rectifying homographies with a shear to modify the disparity range.

    Args:
        matches: list of pairs of 2D points, stored as a Nx4 numpy array
        H1, H2: two homographies, stored as numpy 3x3 matrices

    Returns:
        H2: corrected homography H2

    The matches are provided in the original images coordinate system. By
    transforming these coordinates with the provided homographies, we obtain
    matches whose disparity is only along the x-axis.
    """
    # transform the matches according to the homographies
    p1 = common.points_apply_homography(H1, matches[:, :2])
    x1 = p1[:, 0]
    y1 = p1[:, 1]
    p2 = common.points_apply_homography(H2, matches[:, 2:])
    x2 = p2[:, 0]
    y2 = p2[:, 1]

    if cfg['debug']:
        print("Residual vertical disparities: max, min, mean. Should be zero")
        print(np.max(y2 - y1), np.min(y2 - y1), np.mean(y2 - y1))

    # we search the (s, b) vector that minimises \sum (x1 - (x2+s*y2+b))^2
    # it is a least squares minimisation problem
    A = np.vstack((y2, y2*0+1)).T
    B = x1 - x2
    s, b = np.linalg.lstsq(A, B)[0].flatten()

    # correct H2 with the estimated shear
    return np.dot(np.array([[1, s, b], [0, 1, 0], [0, 0, 1]]), H2)
示例#7
0
def test_affine_transformation():
    x =  np.array([[0, 0], [0, 1], [1, 0], [1, 1]])

    # list of transformations to be tested
    T = np.eye(3)
    I = np.eye(3)
    S = np.eye(3)
    A = np.eye(3)
    translations = []
    isometries = []
    similarities = []
    affinities = []

    for i in range(100):
        translations.append(T)
        isometries.append(I)
        similarities.append(S)
        affinities.append(A)
        T[0:2, 2] = np.random.random(2)
        I = rotation_matrix(2*np.pi * np.random.random_sample())
        I[0:2, 2] = np.random.random(2)
        S = similarity_matrix(2*np.pi * np.random.random_sample(),
                np.random.random_sample())
        S[0:2, 2] = 100 * np.random.random(2)
        A[0:2, :] = np.random.random((2, 3))

    for B in translations + isometries + similarities + affinities:
        xx = common.points_apply_homography(B, x)
        E = estimation.affine_transformation(x, xx)
        assert_array_almost_equal(E, B)
示例#8
0
def test_affine_transformation():
    x =  np.array([[0, 0], [0, 1], [1, 0], [1, 1]])

    # list of transformations to be tested
    T = np.eye(3)
    I = np.eye(3)
    S = np.eye(3)
    A = np.eye(3)
    translations = []
    isometries = []
    similarities = []
    affinities = []

    for i in range(100):
        translations.append(T)
        isometries.append(I)
        similarities.append(S)
        affinities.append(A)
        T[0:2, 2] = np.random.random(2)
        I = rotation_matrix(2*np.pi * np.random.random_sample())
        I[0:2, 2] = np.random.random(2)
        S = similarity_matrix(2*np.pi * np.random.random_sample(),
                np.random.random_sample())
        S[0:2, 2] = 100 * np.random.random(2)
        A[0:2, :] = np.random.random((2, 3))

    for B in translations + isometries + similarities + affinities:
        xx = common.points_apply_homography(B, x)
        E = estimation.affine_transformation(x, xx)
        assert_array_almost_equal(E, B)
示例#9
0
def register_horizontally_translation(matches, H1, H2, flag='center'):
    """
    Adjust rectifying homographies with a translation to modify the disparity range.

    Args:
        matches: list of pairs of 2D points, stored as a Nx4 numpy array
        H1, H2: two homographies, stored as numpy 3x3 matrices
        flag: option needed to control how to modify the disparity range:
            'center': move the barycenter of disparities of matches to zero
            'positive': make all the disparities positive
            'negative': make all the disparities negative. Required for
                Hirshmuller stereo (java)

    Returns:
        H2: corrected homography H2

    The matches are provided in the original images coordinate system. By
    transforming these coordinates with the provided homographies, we obtain
    matches whose disparity is only along the x-axis. The second homography H2
    is corrected with a horizontal translation to obtain the desired property
    on the disparity range.
    """
    # transform the matches according to the homographies
    p1 = common.points_apply_homography(H1, matches[:, :2])
    x1 = p1[:, 0]
    y1 = p1[:, 1]
    p2 = common.points_apply_homography(H2, matches[:, 2:])
    x2 = p2[:, 0]
    y2 = p2[:, 1]

    # for debug, print the vertical disparities. Should be zero.
    if cfg['debug']:
        print("Residual vertical disparities: max, min, mean. Should be zero")
        print(np.max(y2 - y1), np.min(y2 - y1), np.mean(y2 - y1))

    # compute the disparity offset according to selected option
    t = 0
    if (flag == 'center'):
        t = np.mean(x2 - x1)
    if (flag == 'positive'):
        t = np.min(x2 - x1)
    if (flag == 'negative'):
        t = np.max(x2 - x1)

    # correct H2 with a translation
    return np.dot(common.matrix_translation(-t, 0), H2)
示例#10
0
文件: rectification.py 项目: yxqd/s2p
def register_horizontally_translation(matches, H1, H2, flag='center'):
    """
    Adjust rectifying homographies with a translation to modify the disparity range.

    Args:
        matches: list of pairs of 2D points, stored as a Nx4 numpy array
        H1, H2: two homographies, stored as numpy 3x3 matrices
        flag: option needed to control how to modify the disparity range:
            'center': move the barycenter of disparities of matches to zero
            'positive': make all the disparities positive
            'negative': make all the disparities negative. Required for
                Hirshmuller stereo (java)

    Returns:
        H2: corrected homography H2

    The matches are provided in the original images coordinate system. By
    transforming these coordinates with the provided homographies, we obtain
    matches whose disparity is only along the x-axis. The second homography H2
    is corrected with a horizontal translation to obtain the desired property
    on the disparity range.
    """
    # transform the matches according to the homographies
    p1 = common.points_apply_homography(H1, matches[:, :2])
    x1 = p1[:, 0]
    y1 = p1[:, 1]
    p2 = common.points_apply_homography(H2, matches[:, 2:])
    x2 = p2[:, 0]
    y2 = p2[:, 1]

    # for debug, print the vertical disparities. Should be zero.
    if cfg['debug']:
        print("Residual vertical disparities: max, min, mean. Should be zero")
        print(np.max(y2 - y1), np.min(y2 - y1), np.mean(y2 - y1))

    # compute the disparity offset according to selected option
    t = 0
    if (flag == 'center'):
        t = np.mean(x2 - x1)
    if (flag == 'positive'):
        t = np.min(x2 - x1)
    if (flag == 'negative'):
        t = np.max(x2 - x1)

    # correct H2 with a translation
    return np.dot(common.matrix_translation(-t, 0), H2)
示例#11
0
def cost_function(v, *args):
    """
    Objective function to minimize in order to correct the pointing error.

    Arguments:
        v: vector of size 3 or 4, containing the parameters of the euclidean
            transformation we are looking for.
        rpc1, rpc2: two instances of the rpc_model.RPCModel class
        matches: 2D numpy array containing a list of matches. Each line
            contains one pair of points, ordered as x1 y1 x2 y2.
            The coordinate system is the one of the big images.
        alpha: relative weight of the error terms: e + alpha*(h-h0)^2. See
            paper for more explanations.

    Returns:
        The sum of pointing errors and altitude differences, as written in the
        paper formula (1).
    """
    rpc1, rpc2, matches = args[0], args[1], args[2]
    if len(args) == 4:
        alpha = args[3]
    else:
        alpha = 0.01

    # verify that parameters are in the bounding box
    if (np.abs(v[0]) > 200 * np.pi or np.abs(v[1]) > 10000
            or np.abs(v[2]) > 10000):
        print('warning: cost_function is going too far')
        print(v)

    if (len(v) > 3):
        if (np.abs(v[3]) > 20000):
            print('warning: cost_function is going too far')
            print(v)

    # compute the altitudes from the matches without correction
    x1 = matches[:, 0]
    y1 = matches[:, 1]
    x2 = matches[:, 2]
    y2 = matches[:, 3]
    h0 = rpc_utils.compute_height(rpc1, rpc2, x1, y1, x2, y2)[0]

    # transform the coordinates of points in the second image according to
    # matrix A, built from vector v
    A = euclidean_transform_matrix(v)
    p2 = common.points_apply_homography(A, matches[:, 2:4])
    x2 = p2[:, 0]
    y2 = p2[:, 1]

    # compute the cost
    h, e = rpc_utils.compute_height(rpc1, rpc2, x1, y1, x2, y2)
    cost = np.sum((h - h0)**2)
    cost *= alpha
    cost += np.sum(e)

    #print cost
    return cost
示例#12
0
文件: rectification.py 项目: yxqd/s2p
def rectification_homographies(matches, x, y, w, h, hmargin=0, vmargin=0):
    """
    Computes rectifying homographies from point matches for a given ROI.

    The affine fundamental matrix F is estimated with the gold-standard
    algorithm, then two rectifying similarities (rotation, zoom, translation)
    are computed directly from F.

    Args:
        matches: numpy array of shape (n, 4) containing a list of 2D point
            correspondences between the two images.
        x, y, w, h: four integers defining the rectangular ROI in the first
            image. (x, y) is the top-left corner, and (w, h) are the dimensions
            of the rectangle.
        {h,v}margin: translations added to the rectifying similarities to extend the
            horizontal and vertical footprint of the rectified images

    Returns:
        S1, S2, F: three numpy arrays of shape (3, 3) representing the
        two rectifying similarities to be applied to the two images and the
        corresponding affine fundamental matrix.
    """
    # estimate the affine fundamental matrix with the Gold standard algorithm
    F = estimation.affine_fundamental_matrix(matches)

    # compute rectifying similarities
    S1, S2 = estimation.rectifying_similarities_from_affine_fundamental_matrix(
        F, cfg['debug'])

    if cfg['debug']:
        y1 = common.points_apply_homography(S1, matches[:, :2])[:, 1]
        y2 = common.points_apply_homography(S2, matches[:, 2:])[:, 1]
        err = np.abs(y1 - y2)
        print("max, min, mean rectification error on point matches: ", end=' ')
        print(np.max(err), np.min(err), np.mean(err))

    # pull back top-left corner of the ROI to the origin (plus margin)
    pts = common.points_apply_homography(
        S1, [[x, y], [x + w, y], [x + w, y + h], [x, y + h]])
    x0, y0 = common.bounding_box2D(pts)[:2]
    T = common.matrix_translation(-x0 + hmargin, -y0 + vmargin)
    return np.dot(T, S1), np.dot(T, S2), F
示例#13
0
def disparity_range_from_matches(matches, H1, H2, w, h):
    """
    Compute the disparity range of a ROI from a list of point matches.

    The estimation is based on the extrapolation of the affine registration
    estimated from the matches. The extrapolation is done on the whole region of
    interest.

    Args:
        matches: Nx4 numpy array containing a list of matches, in the full
            image coordinates frame, before rectification
        w, h: width and height of the rectangular ROI in the first image.
        H1, H2: two rectifying homographies, stored as numpy 3x3 matrices

    Returns:
        disp_min, disp_max: horizontal disparity range
    """
    # transform the matches according to the homographies
    p1 = common.points_apply_homography(H1, matches[:, :2])
    x1 = p1[:, 0]
    p2 = common.points_apply_homography(H2, matches[:, 2:])
    x2 = p2[:, 0]
    y2 = p2[:, 1]

    # estimate an affine transformation (tilt, shear and bias) mapping p1 on p2
    t, s, b = np.linalg.lstsq(np.vstack((x2, y2, y2 * 0 + 1)).T, x1)[0][:3]

    # compute the disparities for the affine model. The extrema are obtained at
    # the ROI corners
    xx = np.array([0, w, 0, w])
    yy = np.array([0, 0, h, h])
    disp_affine_model = (xx * t + yy * s + b) - xx

    # compute the final disparity range
    disp_min = np.floor(min(np.min(disp_affine_model), np.min(x2 - x1)))
    disp_max = np.ceil(max(np.max(disp_affine_model), np.max(x2 - x1)))

    # add a security margin to the disparity range
    disp_min *= (1 - np.sign(disp_min) * cfg['disp_range_extra_margin'])
    disp_max *= (1 + np.sign(disp_max) * cfg['disp_range_extra_margin'])
    return disp_min, disp_max
示例#14
0
def evaluation_from_estimated_F(im1,
                                im2,
                                rpc1,
                                rpc2,
                                x,
                                y,
                                w,
                                h,
                                A=None,
                                matches=None):
    """
    Measures the pointing error on a Pleiades' pair of images, affine approx.

    Args:
        im1, im2: paths to the two Pleiades images (usually jp2 or tif)
        rpc1, rpc2: two instances of the rpc_model.RPCModel class
        x, y, w, h: four integers defining the rectangular ROI in the first image.
            (x, y) is the top-left corner, and (w, h) are the dimensions of the
            rectangle.
        A (optional): 3x3 numpy array containing the pointing error correction
            for im2.
        matches (optional): Nx4 numpy array containing a list of matches to use
            to compute the pointing error

    Returns:
        the mean pointing error, in the direction orthogonal to the epipolar
        lines. This error is measured in pixels, and computed from an
        approximated fundamental matrix.
    """
    if not matches:
        matches = sift.matches_on_rpc_roi(im1, im2, rpc1, rpc2, x, y, w, h)
    p1 = matches[:, 0:2]
    p2 = matches[:, 2:4]
    print('%d sift matches' % len(matches))

    # apply pointing correction matrix, if available
    if A is not None:
        p2 = common.points_apply_homography(A, p2)

    # estimate the fundamental matrix between the two views
    rpc_matches = rpc_utils.matches_from_rpc(rpc1, rpc2, x, y, w, h, 5)
    F = estimation.affine_fundamental_matrix(rpc_matches)

    # compute the mean displacement from epipolar lines
    d_sum = 0
    for i in range(len(p1)):
        x = np.array([p1[i, 0], p1[i, 1], 1])
        xx = np.array([p2[i, 0], p2[i, 1], 1])
        ll = F.dot(x)
        #d = np.sign(xx.dot(ll)) * evaluation.distance_point_to_line(xx, ll)
        d = evaluation.distance_point_to_line(xx, ll)
        d_sum += d
    return d_sum / len(p1)
示例#15
0
def rectification_homographies(matches, x, y, w, h, hmargin=0, vmargin=0):
    """
    Computes rectifying homographies from point matches for a given ROI.

    The affine fundamental matrix F is estimated with the gold-standard
    algorithm, then two rectifying similarities (rotation, zoom, translation)
    are computed directly from F.

    Args:
        matches: numpy array of shape (n, 4) containing a list of 2D point
            correspondences between the two images.
        x, y, w, h: four integers defining the rectangular ROI in the first
            image. (x, y) is the top-left corner, and (w, h) are the dimensions
            of the rectangle.
        {h,v}margin: translations added to the rectifying similarities to extend the
            horizontal and vertical footprint of the rectified images

    Returns:
        S1, S2, F: three numpy arrays of shape (3, 3) representing the
        two rectifying similarities to be applied to the two images and the
        corresponding affine fundamental matrix.
    """
    # estimate the affine fundamental matrix with the Gold standard algorithm
    F = estimation.affine_fundamental_matrix(matches)

    # compute rectifying similarities
    S1, S2 = estimation.rectifying_similarities_from_affine_fundamental_matrix(F, cfg['debug'])

    if cfg['debug']:
        y1 = common.points_apply_homography(S1, matches[:, :2])[:, 1]
        y2 = common.points_apply_homography(S2, matches[:, 2:])[:, 1]
        err = np.abs(y1 - y2)
        print("max, min, mean rectification error on point matches: ", end=' ')
        print(np.max(err), np.min(err), np.mean(err))

    # pull back top-left corner of the ROI to the origin (plus margin)
    pts = common.points_apply_homography(S1, [[x, y], [x+w, y], [x+w, y+h], [x, y+h]])
    x0, y0 = common.bounding_box2D(pts)[:2]
    T = common.matrix_translation(-x0 + hmargin, -y0 + vmargin)
    return np.dot(T, S1), np.dot(T, S2), F
示例#16
0
def evaluation_iterative(im1,
                         im2,
                         rpc1,
                         rpc2,
                         x,
                         y,
                         w,
                         h,
                         A=None,
                         matches=None):
    """
    Measures the maximal pointing error on a Pleiades' pair of images.

    Args:
        im1, im2: paths to the two Pleiades images (usually jp2 or tif)
        rpc1, rpc2: two instances of the rpc_model.RPCModel class
        x, y, w, h: four integers defining the rectangular ROI in the first
            image.  (x, y) is the top-left corner, and (w, h) are the dimensions
            of the rectangle.
        A (optional): 3x3 numpy array containing the pointing error correction
            for im2.
        matches (optional): Nx4 numpy array containing a list of matches to use
            to compute the pointing error

    Returns:
        the mean pointing error, in the direction orthogonal to the epipolar
        lines. This error is measured in pixels.
    """
    if not matches:
        matches = sift.matches_on_rpc_roi(im1, im2, rpc1, rpc2, x, y, w, h)
    p1 = matches[:, 0:2]
    p2 = matches[:, 2:4]
    print('%d sift matches' % len(matches))

    # apply pointing correction matrix, if available
    if A is not None:
        p2 = common.points_apply_homography(A, p2)

    # compute the pointing error for each match
    x1 = p1[:, 0]
    y1 = p1[:, 1]
    x2 = p2[:, 0]
    y2 = p2[:, 1]
    e = rpc_utils.compute_height(rpc1, rpc2, x1, y1, x2, y2)[1]
    # matches = matches[e < 0.1, :]
    # visualisation.plot_matches_pleiades(im1, im2, matches)
    print("max, mean, min pointing error, from %d points:" % (len(matches)))
    print(np.max(e), np.mean(e), np.min(e))

    # return the mean error
    return np.mean(np.abs(e))
示例#17
0
def plot_pointing_error_tile(im1, im2, rpc1, rpc2, x, y, w, h,
        matches_sift=None, f=100, out_files_pattern=None):
    """
    Args:
        im1, im2: path to full images
        rpc1, rcp2: path to associated rpc xml files
        x, y, w, h: four integers defining the rectangular tile in the reference
            image. (x, y) is the top-left corner, and (w, h) are the dimensions
            of the tile.
        f (optional, default is 100): exageration factor for the error vectors
        out_files_pattern (optional, default is None): pattern used to name the
            two output files (plots of the pointing error)

    Returns:
        nothing, but opens a display
    """
    # read rpcs
    r1 = rpc_model.RPCModel(rpc1)
    r2 = rpc_model.RPCModel(rpc2)

    # compute sift matches
    if not matches_sift:
        matches_sift = sift.matches_on_rpc_roi(im1, im2, r1, r2, x, y, w, h)

    # compute rpc matches
    matches_rpc = rpc_utils.matches_from_rpc(r1, r2, x, y, w, h, 5)

    # estimate affine fundamental matrix
    F = estimation.affine_fundamental_matrix(matches_rpc)

    # compute error vectors
    e = s2plib.pointing_accuracy.error_vectors(matches_sift, F, 'ref')

    A = s2plib.pointing_accuracy.local_translation(r1,r2, x,y,w,h, matches_sift)
    p = matches_sift[:, 0:2]
    q = matches_sift[:, 2:4]
    qq = common.points_apply_homography(A, q)
    ee = s2plib.pointing_accuracy.error_vectors(np.hstack((p, qq)), F, 'ref')
    print(s2plib.pointing_accuracy.evaluation_from_estimated_F(im1, im2,
        r1, r2, x, y, w, h, None, matches_sift))
    print(s2plib.pointing_accuracy.evaluation_from_estimated_F(im1, im2,
        r1, r2, x, y, w, h, A, matches_sift))

    # plot the vectors: they go from the point x to the line (F.T)x'
    plot_vectors(p, -e, x, y, w, h, f, out_file='%s_before.png' % out_files_pattern)
    plot_vectors(p, -ee, x, y, w, h, f, out_file='%s_after.png' % out_files_pattern)
示例#18
0
def plot_pointing_error_tile(im1, im2, rpc1, rpc2, x, y, w, h,
        matches_sift=None, f=100, out_files_pattern=None):
    """
    Args:
        im1, im2: path to full images
        rpc1, rcp2: path to associated rpc xml files
        x, y, w, h: four integers defining the rectangular tile in the reference
            image. (x, y) is the top-left corner, and (w, h) are the dimensions
            of the tile.
        f (optional, default is 100): exageration factor for the error vectors
        out_files_pattern (optional, default is None): pattern used to name the
            two output files (plots of the pointing error)

    Returns:
        nothing, but opens a display
    """
    # read rpcs
    r1 = rpc_model.RPCModel(rpc1)
    r2 = rpc_model.RPCModel(rpc2)

    # compute sift matches
    if not matches_sift:
        matches_sift = sift.matches_on_rpc_roi(im1, im2, r1, r2, x, y, w, h)

    # compute rpc matches
    matches_rpc = rpc_utils.matches_from_rpc(r1, r2, x, y, w, h, 5)

    # estimate affine fundamental matrix
    F = estimation.affine_fundamental_matrix(matches_rpc)

    # compute error vectors
    e = s2plib.pointing_accuracy.error_vectors(matches_sift, F, 'ref')

    A = s2plib.pointing_accuracy.local_translation(r1,r2, x,y,w,h, matches_sift)
    p = matches_sift[:, 0:2]
    q = matches_sift[:, 2:4]
    qq = common.points_apply_homography(A, q)
    ee = s2plib.pointing_accuracy.error_vectors(np.hstack((p, qq)), F, 'ref')
    print(s2plib.pointing_accuracy.evaluation_from_estimated_F(im1, im2,
        r1, r2, x, y, w, h, None, matches_sift))
    print(s2plib.pointing_accuracy.evaluation_from_estimated_F(im1, im2,
        r1, r2, x, y, w, h, A, matches_sift))

    # plot the vectors: they go from the point x to the line (F.T)x'
    plot_vectors(p, -e, x, y, w, h, f, out_file='%s_before.png' % out_files_pattern)
    plot_vectors(p, -ee, x, y, w, h, f, out_file='%s_after.png' % out_files_pattern)
示例#19
0
def cost_function_linear(v, rpc1, rpc2, matches):
    """
    Objective function to minimize in order to correct the pointing error.

    Arguments:
        v: vector of size 4, containing the 4 parameters of the euclidean
            transformation we are looking for.
        rpc1, rpc2: two instances of the rpc_model.RPCModel class
        matches: 2D numpy array containing a list of matches. Each line
            contains one pair of points, ordered as x1 y1 x2 y2.
            The coordinate system is the one of the big images.
        alpha: relative weight of the error terms: e + alpha*(h-h0)^2. See
            paper for more explanations.

    Returns:
        The sum of pointing errors and altitude differences, as written in the
        paper formula (1).
    """
    print_params(v)

    # verify that parameters are in the bounding box
    if (np.abs(v[0]) > 200 * np.pi or np.abs(v[1]) > 10000
            or np.abs(v[2]) > 10000 or np.abs(v[3]) > 20000):
        print('warning: cost_function is going too far')
        print(v)

    x, y, w, h = common.bounding_box2D(matches[:, 0:2])
    matches_rpc = rpc_utils.matches_from_rpc(rpc1, rpc2, x, y, w, h, 5)
    F = estimation.fundamental_matrix(matches_rpc)

    # transform the coordinates of points in the second image according to
    # matrix A, built from vector v
    A = euclidean_transform_matrix(v)
    p2 = common.points_apply_homography(A, matches[:, 2:4])

    return evaluation.fundamental_matrix_L1(F, np.hstack([matches[:, 0:2],
                                                          p2]))
示例#20
0
def disparity_to_ply(tile):
    """
    Compute a point cloud from the disparity map of a pair of image tiles.

    Args:
        tile: dictionary containing the information needed to process a tile.
    """
    out_dir = os.path.join(tile['dir'])
    ply_file = os.path.join(out_dir, 'cloud.ply')
    plyextrema = os.path.join(out_dir, 'plyextrema.txt')
    x, y, w, h = tile['coordinates']
    rpc1 = cfg['images'][0]['rpc']
    rpc2 = cfg['images'][1]['rpc']

    if os.path.exists(os.path.join(out_dir, 'stderr.log')):
        print('triangulation: stderr.log exists')
        print('pair_1 not processed on tile {} {}'.format(x, y))
        return

    if cfg['skip_existing'] and os.path.isfile(ply_file):
        print('triangulation done on tile {} {}'.format(x, y))
        return

    print('triangulating tile {} {}...'.format(x, y))
    # This function is only called when there is a single pair (pair_1)
    H_ref = os.path.join(out_dir, 'pair_1', 'H_ref.txt')
    H_sec = os.path.join(out_dir, 'pair_1', 'H_sec.txt')
    pointing = os.path.join(cfg['out_dir'], 'global_pointing_pair_1.txt')
    disp = os.path.join(out_dir, 'pair_1', 'rectified_disp.tif')
    mask_rect = os.path.join(out_dir, 'pair_1', 'rectified_mask.png')
    mask_orig = os.path.join(out_dir, 'cloud_water_image_domain_mask.png')

    # prepare the image needed to colorize point cloud
    colors = os.path.join(out_dir, 'rectified_ref.png')
    if cfg['images'][0]['clr']:
        hom = np.loadtxt(H_ref)
        roi = [[x, y], [x + w, y], [x + w, y + h], [x, y + h]]
        ww, hh = common.bounding_box2D(common.points_apply_homography(
            hom, roi))[2:]
        tmp = common.tmpfile('.tif')
        common.image_apply_homography(tmp, cfg['images'][0]['clr'], hom,
                                      ww + 2 * cfg['horizontal_margin'],
                                      hh + 2 * cfg['vertical_margin'])
        common.image_qauto(tmp, colors)
    else:
        common.image_qauto(
            os.path.join(out_dir, 'pair_1', 'rectified_ref.tif'), colors)

    # compute the point cloud
    triangulation.disp_map_to_point_cloud(ply_file,
                                          disp,
                                          mask_rect,
                                          rpc1,
                                          rpc2,
                                          H_ref,
                                          H_sec,
                                          pointing,
                                          colors,
                                          utm_zone=cfg['utm_zone'],
                                          llbbx=tuple(cfg['ll_bbx']),
                                          xybbx=(x, x + w, y, y + h),
                                          xymsk=mask_orig)

    # compute the point cloud extrema (xmin, xmax, xmin, ymax)
    common.run("plyextrema %s %s" % (ply_file, plyextrema))

    if cfg['clean_intermediate']:
        common.remove(H_ref)
        common.remove(H_sec)
        common.remove(disp)
        common.remove(mask_rect)
        common.remove(mask_orig)
        common.remove(colors)
        common.remove(os.path.join(out_dir, 'pair_1', 'rectified_ref.tif'))
示例#21
0
def local_translation_rotation(r1, r2, x, y, w, h, m):
    """
    Estimates the optimal translation to minimise the relative pointing error
    on a given tile.

    Args:
        r1, r2: two instances of the rpc_model.RPCModel class
        x, y, w, h: region of interest in the reference image (r1)
        m: Nx4 numpy array containing a list of matches, one per line. Each
            match is given by (p1, p2, q1, q2) where (p1, p2) is a point of the
            reference view and (q1, q2) is the corresponding point in the
            secondary view.

    Returns:
        3x3 numpy array containing the homogeneous representation of the
        optimal planar translation, to be applied to the secondary image in
        order to correct the pointing error.
    """
    # estimate the affine fundamental matrix between the two views
    n = cfg['n_gcp_per_axis']
    rpc_matches = rpc_utils.matches_from_rpc(r1, r2, x, y, w, h, n)
    F = estimation.affine_fundamental_matrix(rpc_matches)

    # Compute rectification homographies
    # S1, S2 = estimation.rectifying_similarities_from_affine_fundamental_matrix(F, cfg['debug'])
    hmargin = cfg['horizontal_margin']
    vmargin = cfg['vertical_margin']
    S1, S2, F_rect = rectification.rectification_homographies(rpc_matches, x, y, w, h, hmargin, vmargin)

    N = len(m)
    # Apply rectification on image 1
    S1p1 = common.points_apply_homography(S1, m[:,0:2])
    S1p1 = np.column_stack((S1p1,np.ones((N,1))))
    print("Points 1 rectied")
    print(S1p1[:10])
    # Apply rectification on image 2
    S2p2 = common.points_apply_homography(S1, m[:,2:4])
    S2p2 = np.column_stack((S2p2, np.ones((N,1))))
    print("Points 2 rectied")
    print(S2p2[:10])

    # Compute F in the rectified space
    rect_matches = np.column_stack((S1p1[:,0:2], S2p2[:, 0:2]))
    F_rect2 = estimation.affine_fundamental_matrix(rect_matches)

    # Compute epipolar lines
    FS1p1 = np.dot(F_rect2, S1p1.T).T
    print(FS1p1[:10])

    # Normalize epipolar lines
    c1 = -FS1p1[:, 1]
    FS1p1_norm = FS1p1/c1[:, np.newaxis]
    print(FS1p1_norm[:10])


    # Variable of optimization problem
    A_ = np.ones((N,1))
    # A_ = np.column_stack((S2p2[:,0].reshape(N, 1),np.ones((N,1))))
    # b_ = S2p2[:, 1] - FS1p1_norm[:, 2]
    b_ = S2p2[:, 1] - S1p1[:, 1]
    t_med = np.median(b_)
    print(t_med)

    t_med2 = np.sort(b_)[int(N/2)]
    print("t_med2", t_med2)

    # min ||Ax + b||^2 => x = - (A^T A )^-1 A^T b
    # X_ = - np.dot(np.linalg.inv(np.dot(A_.T, A_)), np.dot(A_.T, b_))
    # [theta, t] = X_
    # print(t, theta)
    # t = X_[0]

    # Compute epipolar lines witout recitifcation
    p1 = np.column_stack((m[:,0:2],np.ones((N,1))))
    Fp1 = np.dot(F, p1.T).T

    # Compute normal vector to epipolar liness
    ab = np.array([Fp1[0][0], Fp1[0][1]])
    ab = ab/np.linalg.norm(ab)

    tx = t_med*ab[0]
    ty = t_med*ab[1]
    print(tx, ty)

    # Get translation in not rectified image
    T = common.matrix_translation(0, -t_med)
    T = np.linalg.inv(S2).dot(T).dot(S2)
    # T = np.dot(S2_inv, T)
    print(T)

    theta = 0
    cos_theta = np.cos(theta)
    sin_theta = np.sin(theta)
    A = np.array([[cos_theta, -sin_theta, tx],
                  [sin_theta,  cos_theta, ty],
                  [0, 0, 1]])
    return A, F
示例#22
0
def local_translation_rectified(r1, r2, x, y, w, h, m):
    """
    Estimates the optimal translation to minimise the relative pointing error
    on a given tile.

    Args:
        r1, r2: two instances of the rpc_model.RPCModel class
        x, y, w, h: region of interest in the reference image (r1)
        m: Nx4 numpy array containing a list of matches, one per line. Each
            match is given by (p1, p2, q1, q2) where (p1, p2) is a point of the
            reference view and (q1, q2) is the corresponding point in the
            secondary view.

    Returns:
        3x3 numpy array containing the homogeneous representation of the
        optimal planar translation, to be applied to the secondary image in
        order to correct the pointing error.
    """
    # estimate the affine fundamental matrix between the two views
    n = cfg['n_gcp_per_axis']
    rpc_matches = rpc_utils.matches_from_rpc(r1, r2, x, y, w, h, n)
    F = estimation.affine_fundamental_matrix(rpc_matches)

    # Apply rectification on image 1
    S1p1 = common.points_apply_homography(S1, m[:,0:2])
    S1p1 = np.column_stack((S1p1,np.ones((N,1))))
    print("Points 1 rectied")
    print(S1p1[:10])
    # Apply rectification on image 2
    S2p2 = common.points_apply_homography(S1, m[:,2:4])
    S2p2 = np.column_stack((S2p2, np.ones((N,1))))
    print("Points 2 rectied")
    print(S2p2[:10])

    # Compute F in the rectified space
    rect_matches = np.column_stack((S1p1[:,0:2], S2p2[:, 0:2]))
    F_rect2 = estimation.affine_fundamental_matrix(rect_matches)

    # Compute epipolar lines
    FS1p1 = np.dot(F_rect2, S1p1.T).T
    print(FS1p1[:10])

    # Normalize epipolar lines
    c1 = -FS1p1[:, 1]
    FS1p1_norm = FS1p1/c1[:, np.newaxis]
    print(FS1p1_norm[:10])


    b_ = np.abs(S2p2[:, 1] - S1p1[:, 1])
    t_med = np.median(b_)
    print(t_med)

    t_med2 = np.sort(b_)[int(N/2)]
    print("t_med2", t_med2)

    # Compute epipolar lines witout recitifcation
    p1 = np.column_stack((m[:,0:2],np.ones((N,1))))
    Fp1 = np.dot(F, p1.T).T

    # Compute normal vector to epipolar liness
    ab = np.array([Fp1[0][0], Fp1[0][1]])
    ab = ab/np.linalg.norm(ab)

    tx = t_med*ab[0]
    ty = t_med*ab[1]
    print(tx, ty)

    # Get translation in not rectified image
    T = common.matrix_translation(0, -t_med)
    T = np.linalg.inv(S2).dot(T).dot(S2)
    # T = np.dot(S2_inv, T)
    print(T)

    # the correction to be applied to the second view is the opposite
    A = np.array([[1, 0, -out_x],
                  [0, 1, -out_y],
                  [0, 0, 1]])
    return A, F
示例#23
0
文件: rectification.py 项目: yxqd/s2p
def rectify_pair(im1,
                 im2,
                 rpc1,
                 rpc2,
                 x,
                 y,
                 w,
                 h,
                 out1,
                 out2,
                 A=None,
                 sift_matches=None,
                 method='rpc',
                 hmargin=0,
                 vmargin=0):
    """
    Rectify a ROI in a pair of images.

    Args:
        im1, im2: paths to two image files
        rpc1, rpc2: paths to the two xml files containing RPC data
        x, y, w, h: four integers defining the rectangular ROI in the first
            image.  (x, y) is the top-left corner, and (w, h) are the dimensions
            of the rectangle.
        out1, out2: paths to the output rectified crops
        A (optional): 3x3 numpy array containing the pointing error correction
            for im2. This matrix is usually estimated with the pointing_accuracy
            module.
        sift_matches (optional): Nx4 numpy array containing a list of sift
            matches, in the full image coordinates frame
        method (default: 'rpc'): option to decide wether to use rpc of sift
            matches for the fundamental matrix estimation.
        {h,v}margin (optional): horizontal and vertical margins added on the
            sides of the rectified images

    Returns:
        H1, H2: Two 3x3 matrices representing the rectifying homographies that
        have been applied to the two original (large) images.
        disp_min, disp_max: horizontal disparity range
    """
    # read RPC data
    rpc1 = rpc_model.RPCModel(rpc1)
    rpc2 = rpc_model.RPCModel(rpc2)

    # compute real or virtual matches
    if method == 'rpc':
        # find virtual matches from RPC camera models
        matches = rpc_utils.matches_from_rpc(rpc1, rpc2, x, y, w, h,
                                             cfg['n_gcp_per_axis'])

        # correct second image coordinates with the pointing correction matrix
        if A is not None:
            matches[:, 2:] = common.points_apply_homography(
                np.linalg.inv(A), matches[:, 2:])
    else:
        matches = sift_matches

    # compute rectifying homographies
    H1, H2, F = rectification_homographies(matches, x, y, w, h, hmargin,
                                           vmargin)

    if cfg['register_with_shear']:
        # compose H2 with a horizontal shear to reduce the disparity range
        a = np.mean(rpc_utils.altitude_range(rpc1, x, y, w, h))
        lon, lat, alt = rpc_utils.ground_control_points(
            rpc1, x, y, w, h, a, a, 4)
        x1, y1 = rpc1.inverse_estimate(lon, lat, alt)[:2]
        x2, y2 = rpc2.inverse_estimate(lon, lat, alt)[:2]
        m = np.vstack([x1, y1, x2, y2]).T
        m = np.vstack({tuple(row)
                       for row in m})  # remove duplicates due to no alt range
        H2 = register_horizontally_shear(m, H1, H2)

    # compose H2 with a horizontal translation to center disp range around 0
    if sift_matches is not None:
        sift_matches = filter_matches_epipolar_constraint(
            F, sift_matches, cfg['epipolar_thresh'])
        if len(sift_matches) < 10:
            print('WARNING: no registration with less than 10 matches')
        else:
            H2 = register_horizontally_translation(sift_matches, H1, H2)

    # compute disparity range
    if cfg['debug']:
        out_dir = os.path.dirname(out1)
        np.savetxt(os.path.join(out_dir, 'sift_matches_disp.txt'),
                   sift_matches,
                   fmt='%9.3f')
        visualisation.plot_matches(
            im1, im2, rpc1, rpc2, sift_matches, x, y, w, h,
            os.path.join(out_dir, 'sift_matches_disp.png'))
    disp_m, disp_M = disparity_range(rpc1, rpc2, x, y, w, h, H1, H2,
                                     sift_matches, A)

    # compute rectifying homographies for non-epipolar mode (rectify the secondary tile only)
    if block_matching.rectify_secondary_tile_only(cfg['matching_algorithm']):
        H1_inv = np.linalg.inv(H1)
        H1 = np.eye(
            3
        )  # H1 is replaced by 2-D array with ones on the diagonal and zeros elsewhere
        H2 = np.dot(H1_inv, H2)
        T = common.matrix_translation(-x + hmargin, -y + vmargin)
        H1 = np.dot(T, H1)
        H2 = np.dot(T, H2)

    # compute output images size
    roi = [[x, y], [x + w, y], [x + w, y + h], [x, y + h]]
    pts1 = common.points_apply_homography(H1, roi)
    x0, y0, w0, h0 = common.bounding_box2D(pts1)
    # check that the first homography maps the ROI in the positive quadrant
    np.testing.assert_allclose(np.round([x0, y0]), [hmargin, vmargin],
                               atol=.01)

    # apply homographies and do the crops
    common.image_apply_homography(out1, im1, H1, w0 + 2 * hmargin,
                                  h0 + 2 * vmargin)
    common.image_apply_homography(out2, im2, H2, w0 + 2 * hmargin,
                                  h0 + 2 * vmargin)

    if block_matching.rectify_secondary_tile_only(cfg['matching_algorithm']):
        pts_in = [[0, 0], [disp_m, 0], [disp_M, 0]]
        pts_out = common.points_apply_homography(H1_inv, pts_in)
        disp_m = pts_out[1, :] - pts_out[0, :]
        disp_M = pts_out[2, :] - pts_out[0, :]

    return H1, H2, disp_m, disp_M
示例#24
0
def rectify_pair(im1,
                 im2,
                 rpc1,
                 rpc2,
                 x,
                 y,
                 w,
                 h,
                 out1,
                 out2,
                 A=None,
                 sift_matches=None,
                 method='rpc',
                 hmargin=0,
                 vmargin=0):
    """
    Rectify a ROI in a pair of images.

    Args:
        im1, im2: paths to two image files
        rpc1, rpc2: paths to the two xml files containing RPC data
        x, y, w, h: four integers defining the rectangular ROI in the first
            image.  (x, y) is the top-left corner, and (w, h) are the dimensions
            of the rectangle.
        out1, out2: paths to the output rectified crops
        A (optional): 3x3 numpy array containing the pointing error correction
            for im2. This matrix is usually estimated with the pointing_accuracy
            module.
        sift_matches (optional): Nx4 numpy array containing a list of sift
            matches, in the full image coordinates frame
        method (default: 'rpc'): option to decide wether to use rpc of sift
            matches for the fundamental matrix estimation.
        {h,v}margin (optional): horizontal and vertical margins added on the
            sides of the rectified images

        This function uses the parameter subsampling_factor from the
        config module. If the factor z > 1 then the output images will
        be subsampled by a factor z. The output matrices H1, H2, and the
        ranges are also updated accordingly:
        Hi = Z * Hi with Z = diag(1/z, 1/z, 1) and
        disp_min = disp_min / z  (resp _max)

    Returns:
        H1, H2: Two 3x3 matrices representing the rectifying homographies that
        have been applied to the two original (large) images.
        disp_min, disp_max: horizontal disparity range
    """
    # read RPC data
    rpc1 = rpc_model.RPCModel(rpc1)
    rpc2 = rpc_model.RPCModel(rpc2)

    # compute real or virtual matches
    if method == 'rpc':
        # find virtual matches from RPC camera models
        matches = rpc_utils.matches_from_rpc(rpc1, rpc2, x, y, w, h,
                                             cfg['n_gcp_per_axis'])

        # correct second image coordinates with the pointing correction matrix
        if A is not None:
            matches[:, 2:] = common.points_apply_homography(
                np.linalg.inv(A), matches[:, 2:])
    else:
        matches = sift_matches

    # compute rectifying homographies
    H1, H2, F = rectification_homographies(matches, x, y, w, h, hmargin,
                                           vmargin)

    if cfg['register_with_shear']:
        # compose H2 with a horizontal shear to reduce the disparity range
        a = np.mean(rpc_utils.altitude_range(rpc1, x, y, w, h))
        lon, lat, alt = rpc_utils.ground_control_points(
            rpc1, x, y, w, h, a, a, 4)
        x1, y1 = rpc1.inverse_estimate(lon, lat, alt)[:2]
        x2, y2 = rpc2.inverse_estimate(lon, lat, alt)[:2]
        m = np.vstack([x1, y1, x2, y2]).T
        m = np.vstack({tuple(row)
                       for row in m})  # remove duplicates due to no alt range
        H2 = register_horizontally_shear(m, H1, H2)

    # compose H2 with a horizontal translation to center disp range around 0
    if sift_matches is not None:
        sift_matches = filter_matches_epipolar_constraint(
            F, sift_matches, cfg['epipolar_thresh'])
        if len(sift_matches) < 10:
            print('WARNING: no registration with less than 10 matches')
        else:
            H2 = register_horizontally_translation(sift_matches, H1, H2)

    # compute disparity range
    if cfg['debug']:
        out_dir = os.path.dirname(out1)
        np.savetxt(os.path.join(out_dir, 'sift_matches_disp.txt'),
                   sift_matches,
                   fmt='%9.3f')
        visualisation.plot_matches(
            im1, im2, rpc1, rpc2, sift_matches, x, y, w, h,
            os.path.join(out_dir, 'sift_matches_disp.png'))
    disp_m, disp_M = disparity_range(rpc1, rpc2, x, y, w, h, H1, H2,
                                     sift_matches, A)

    # impose a minimal disparity range (TODO this is valid only with the
    # 'center' flag for register_horizontally_translation)
    disp_m = min(-3, disp_m)
    disp_M = max(3, disp_M)

    #  if subsampling_factor'] the homographies are altered to reflect the zoom
    z = cfg['subsampling_factor']
    if z != 1:
        Z = np.diag((1 / z, 1 / z, 1))
        H1 = np.dot(Z, H1)
        H2 = np.dot(Z, H2)
        disp_m = np.floor(disp_m / z)
        disp_M = np.ceil(disp_M / z)
        hmargin = int(np.floor(hmargin / z))
        vmargin = int(np.floor(vmargin / z))

    # compute output images size
    roi = [[x, y], [x + w, y], [x + w, y + h], [x, y + h]]
    pts1 = common.points_apply_homography(H1, roi)
    x0, y0, w0, h0 = common.bounding_box2D(pts1)
    # check that the first homography maps the ROI in the positive quadrant
    np.testing.assert_allclose(np.round([x0, y0]), [hmargin, vmargin],
                               atol=.01)

    # apply homographies and do the crops
    common.image_apply_homography(out1, im1, H1, w0 + 2 * hmargin,
                                  h0 + 2 * vmargin)
    common.image_apply_homography(out2, im2, H2, w0 + 2 * hmargin,
                                  h0 + 2 * vmargin)

    return H1, H2, disp_m, disp_M
示例#25
0
文件: s2p.py 项目: mnhrdt/s2p
def disparity_to_ply(tile):
    """
    Compute a point cloud from the disparity map of a pair of image tiles.

    Args:
        tile: dictionary containing the information needed to process a tile.
    """
    out_dir = os.path.join(tile['dir'])
    ply_file = os.path.join(out_dir, 'cloud.ply')
    plyextrema = os.path.join(out_dir, 'plyextrema.txt')
    x, y, w, h = tile['coordinates']
    rpc1 = cfg['images'][0]['rpc']
    rpc2 = cfg['images'][1]['rpc']

    if os.path.exists(os.path.join(out_dir, 'stderr.log')):
        print('triangulation: stderr.log exists')
        print('pair_1 not processed on tile {} {}'.format(x, y))
        return

    if cfg['skip_existing'] and os.path.isfile(ply_file):
        print('triangulation done on tile {} {}'.format(x, y))
        return

    print('triangulating tile {} {}...'.format(x, y))
    # This function is only called when there is a single pair (pair_1)
    H_ref = os.path.join(out_dir, 'pair_1', 'H_ref.txt')
    H_sec = os.path.join(out_dir, 'pair_1', 'H_sec.txt')
    pointing = os.path.join(cfg['out_dir'], 'global_pointing_pair_1.txt')
    disp = os.path.join(out_dir, 'pair_1', 'rectified_disp.tif')
    mask_rect = os.path.join(out_dir, 'pair_1', 'rectified_mask.png')
    mask_orig = os.path.join(out_dir, 'cloud_water_image_domain_mask.png')

    # prepare the image needed to colorize point cloud
    colors = os.path.join(out_dir, 'rectified_ref.png')
    if cfg['images'][0]['clr']:
        hom = np.loadtxt(H_ref)
        roi = [[x, y], [x+w, y], [x+w, y+h], [x, y+h]]
        ww, hh = common.bounding_box2D(common.points_apply_homography(hom, roi))[2:]
        tmp = common.tmpfile('.tif')
        common.image_apply_homography(tmp, cfg['images'][0]['clr'], hom,
                                      ww + 2*cfg['horizontal_margin'],
                                      hh + 2*cfg['vertical_margin'])
        common.image_qauto(tmp, colors)
    else:
        common.image_qauto(os.path.join(out_dir, 'pair_1', 'rectified_ref.tif'), colors)

    # compute the point cloud
    triangulation.disp_map_to_point_cloud(ply_file, disp, mask_rect, rpc1, rpc2,
                                          H_ref, H_sec, pointing, colors,
                                          utm_zone=cfg['utm_zone'],
                                          llbbx=tuple(cfg['ll_bbx']),
                                          xybbx=(x, x+w, y, y+h),
                                          xymsk=mask_orig)

    # compute the point cloud extrema (xmin, xmax, xmin, ymax)
    common.run("plyextrema %s %s" % (ply_file, plyextrema))

    if cfg['clean_intermediate']:
        common.remove(H_ref)
        common.remove(H_sec)
        common.remove(disp)
        common.remove(mask_rect)
        common.remove(mask_orig)
        common.remove(colors)
        common.remove(os.path.join(out_dir, 'pair_1', 'rectified_ref.tif'))
示例#26
0
def rectify_pair(im1, im2, rpc1, rpc2, x, y, w, h, out1, out2, A=None,
                 sift_matches=None, method='rpc', hmargin=0, vmargin=0):
    """
    Rectify a ROI in a pair of images.

    Args:
        im1, im2: paths to two image files
        rpc1, rpc2: paths to the two xml files containing RPC data
        x, y, w, h: four integers defining the rectangular ROI in the first
            image.  (x, y) is the top-left corner, and (w, h) are the dimensions
            of the rectangle.
        out1, out2: paths to the output rectified crops
        A (optional): 3x3 numpy array containing the pointing error correction
            for im2. This matrix is usually estimated with the pointing_accuracy
            module.
        sift_matches (optional): Nx4 numpy array containing a list of sift
            matches, in the full image coordinates frame
        method (default: 'rpc'): option to decide wether to use rpc of sift
            matches for the fundamental matrix estimation.
        {h,v}margin (optional): horizontal and vertical margins added on the
            sides of the rectified images

        This function uses the parameter subsampling_factor from the
        config module. If the factor z > 1 then the output images will
        be subsampled by a factor z. The output matrices H1, H2, and the
        ranges are also updated accordingly:
        Hi = Z * Hi with Z = diag(1/z, 1/z, 1) and
        disp_min = disp_min / z  (resp _max)

    Returns:
        H1, H2: Two 3x3 matrices representing the rectifying homographies that
        have been applied to the two original (large) images.
        disp_min, disp_max: horizontal disparity range
    """
    # read RPC data
    rpc1 = rpc_model.RPCModel(rpc1)
    rpc2 = rpc_model.RPCModel(rpc2)

    # compute real or virtual matches
    if method == 'rpc':
        # find virtual matches from RPC camera models
        matches = rpc_utils.matches_from_rpc(rpc1, rpc2, x, y, w, h,
                                             cfg['n_gcp_per_axis'])

        # correct second image coordinates with the pointing correction matrix
        if A is not None:
            matches[:, 2:] = common.points_apply_homography(np.linalg.inv(A),
                                                            matches[:, 2:])
    else:
        matches = sift_matches

    # compute rectifying homographies
    H1, H2, F = rectification_homographies(matches, x, y, w, h, hmargin, vmargin)

    if cfg['register_with_shear']:
        # compose H2 with a horizontal shear to reduce the disparity range
        a = np.mean(rpc_utils.altitude_range(rpc1, x, y, w, h))
        lon, lat, alt = rpc_utils.ground_control_points(rpc1, x, y, w, h, a, a, 4)
        x1, y1 = rpc1.inverse_estimate(lon, lat, alt)[:2]
        x2, y2 = rpc2.inverse_estimate(lon, lat, alt)[:2]
        m = np.vstack([x1, y1, x2, y2]).T
        m = np.vstack({tuple(row) for row in m})  # remove duplicates due to no alt range
        H2 = register_horizontally_shear(m, H1, H2)

    # compose H2 with a horizontal translation to center disp range around 0
    if sift_matches is not None:
        sift_matches = filter_matches_epipolar_constraint(F, sift_matches,
                                                          cfg['epipolar_thresh'])
        if len(sift_matches) < 10:
            print('WARNING: no registration with less than 10 matches')
        else:
            H2 = register_horizontally_translation(sift_matches, H1, H2)

    # compute disparity range
    if cfg['debug']:
        out_dir = os.path.dirname(out1)
        np.savetxt(os.path.join(out_dir, 'sift_matches_disp.txt'),
                   sift_matches, fmt='%9.3f')
        visualisation.plot_matches(im1, im2, rpc1, rpc2, sift_matches, x, y, w, h,
                                   os.path.join(out_dir, 'sift_matches_disp.png'))
    disp_m, disp_M = disparity_range(rpc1, rpc2, x, y, w, h, H1, H2,
                                     sift_matches, A)

    # impose a minimal disparity range (TODO this is valid only with the
    # 'center' flag for register_horizontally_translation)
    disp_m = min(-3, disp_m)
    disp_M = max(3, disp_M)

    # compute rectifying homographies for non-epipolar mode (rectify the secondary tile only)
    if block_matching.rectify_secondary_tile_only(cfg['matching_algorithm']):
        H1_inv = np.linalg.inv(H1)
        H1 = np.eye(3) # H1 is replaced by 2-D array with ones on the diagonal and zeros elsewhere
        H2 = np.dot(H1_inv,H2)
        T = common.matrix_translation(-x + hmargin, -y + vmargin)
        H1 = np.dot(T, H1)
        H2 = np.dot(T, H2)

    #  if subsampling_factor'] the homographies are altered to reflect the zoom
    z = cfg['subsampling_factor']
    if z != 1:
        Z = np.diag((1/z, 1/z, 1))
        H1 = np.dot(Z, H1)
        H2 = np.dot(Z, H2)
        disp_m = np.floor(disp_m / z)
        disp_M = np.ceil(disp_M / z)
        hmargin = int(np.floor(hmargin / z))
        vmargin = int(np.floor(vmargin / z))

    # compute output images size
    roi = [[x, y], [x+w, y], [x+w, y+h], [x, y+h]]
    pts1 = common.points_apply_homography(H1, roi)
    x0, y0, w0, h0 = common.bounding_box2D(pts1)
    # check that the first homography maps the ROI in the positive quadrant
    np.testing.assert_allclose(np.round([x0, y0]), [hmargin, vmargin], atol=.01)

    # apply homographies and do the crops
    common.image_apply_homography(out1, im1, H1, w0 + 2*hmargin, h0 + 2*vmargin)
    common.image_apply_homography(out2, im2, H2, w0 + 2*hmargin, h0 + 2*vmargin)

    if cfg['disp_min'] is not None: disp_m = cfg['disp_min']
    if cfg['disp_max'] is not None: disp_M = cfg['disp_max']

    if block_matching.rectify_secondary_tile_only(cfg['matching_algorithm']):
        pts_in = [[0, 0], [disp_m, 0], [disp_M, 0]]
        pts_out = common.points_apply_homography(H1_inv,
                                                 pts_in)
        disp_m = pts_out[1,:] - pts_out[0,:]
        disp_M = pts_out[2,:] - pts_out[0,:]

    return H1, H2, disp_m, disp_M