示例#1
0
def test_join_topk():
    """Tests a top k with a join

    :return: None
    """

    limit = 5

    query_plan = QueryPlan()

    # Query plan
    ts1 = query_plan.add_operator(SQLTableScan('supplier.csv',
                                               'select * from S3Object;', False, 'ts1', query_plan, False))
    ts1_project = query_plan.add_operator(
        Project([ProjectExpression(lambda t_: t_['_3'], 's_nationkey')], 'ts1_project', query_plan, False))
    ts2 = query_plan.add_operator(SQLTableScan('nation.csv',
                                               'select * from S3Object;', False, 'ts2', query_plan, False))
    ts2_project = query_plan.add_operator(
        Project([ProjectExpression(lambda t_: t_['_0'], 'n_nationkey')], 'ts2_project', query_plan, False))
    j = query_plan.add_operator(HashJoin(JoinExpression('s_nationkey', 'n_nationkey'), 'j', query_plan, False))
    t = query_plan.add_operator(Limit(limit, 't', query_plan, False))
    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts1.connect(ts1_project)
    ts2.connect(ts2_project)
    j.connect_left_producer(ts1_project)
    j.connect_right_producer(ts2_project)
    j.connect(t)
    t.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"), gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    c.print_tuples()

    field_names = ['s_nationkey', 'n_nationkey']

    assert len(c.tuples()) == limit + 1

    assert c.tuples()[0] == field_names

    num_rows = 0
    for t in c.tuples():
        num_rows += 1
        # Assert that the nation_key in table 1 has been joined with the record in table 2 with the same nation_key
        if num_rows > 1:
            lt = IndexedTuple.build(t, field_names)
            assert lt['s_nationkey'] == lt['n_nationkey']

    # Write the metrics
    query_plan.print_metrics()
示例#2
0
def test_scan_empty():
    """Executes a scan where no records are returned. We tst this as it's somewhat peculiar with s3 select, in so much
    as s3 does not return column names when selecting data, meaning, unlike a traditional DBMS, no field names tuple
    should be present in the results.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    ts = query_plan.add_operator(
        SQLTableScan('nation.csv', "select * from s3object limit 0", False,
                     'ts', query_plan, False))
    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    assert len(c.tuples()) == 0

    # Write the metrics
    query_plan.print_metrics()
示例#3
0
def test_project_perf():
    """Executes a projection over many source rows to examine performance.

    :return: None
    """

    num_rows = 10000
    profile_file_name = os.path.join(
        ROOT_DIR, "../tests-output/" + gen_test_id() + ".prof")

    query_plan = QueryPlan(is_async=True, buffer_size=0)

    # Query plan
    random_col_defs = [
        RandomIntColumnDef(0, 9),
        RandomStringColumnDef(10, 20),
        RandomDateColumnDef(datetime.strptime('2017-01-01', '%Y-%m-%d'),
                            datetime.strptime('2018-01-01', '%Y-%m-%d'))
    ]

    random_table_scan = query_plan.add_operator(
        RandomTableScan(num_rows, random_col_defs, 'random_table_scan',
                        query_plan, False))

    project = query_plan.add_operator(
        Project([
            ProjectExpression(lambda t_: t_['_0'], 'r_0'),
            ProjectExpression(lambda t_: t_['_1'], 'r_1'),
            ProjectExpression(lambda t_: t_['_2'], 'r_2')
        ], 'project', query_plan, False))

    project.set_profiled(True, profile_file_name)

    collate = query_plan.add_operator(Collate('collate', query_plan, False))

    random_table_scan.connect(project)
    project.connect(collate)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    tuples = collate.tuples()

    collate.print_tuples(tuples)

    # Write the metrics
    query_plan.print_metrics()

    query_plan.stop()

    # Write the metrics
    s = pstats.Stats(profile_file_name)
    s.strip_dirs().sort_stats("time").print_stats()

    assert len(tuples) == num_rows + 1
示例#4
0
def test_pandas_project_simple():
    """Tests a projection

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    ts = query_plan.add_operator(
        SQLTableScan('nation.csv', 'select * from S3Object '
                     'limit 3;', True, 'ts', query_plan, False))

    p = query_plan.add_operator(
        Project([
            ProjectExpression(lambda t_: t_['_2'], 'n_regionkey'),
            ProjectExpression(lambda t_: t_['_0'], 'n_nationkey'),
            ProjectExpression(lambda t_: t_['_3'], 'n_comment')
        ], 'p', query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(p)
    p.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    field_names = ['n_regionkey', 'n_nationkey', 'n_comment']

    assert len(c.tuples()) == 3 + 1

    assert c.tuples()[0] == field_names

    assert c.tuples()[1] == [
        '0', '0', ' haggle. carefully final deposits detect slyly agai'
    ]
    assert c.tuples()[2] == [
        '1', '1',
        'al foxes promise slyly according to the regular accounts. bold requests alon'
    ]
    assert c.tuples()[3] == [
        '1', '2',
        'y alongside of the pending deposits. carefully special packages '
        'are about the ironic forges. slyly special '
    ]

    # Write the metrics
    query_plan.print_metrics()
示例#5
0
def test_group_count():
    """Tests a group by query with a count aggregate

    :return: None
    """

    num_rows = 0

    query_plan = QueryPlan()

    # Query plan
    # select s_nationkey, count(s_suppkey) from supplier.csv group by s_nationkey
    ts = query_plan.add_operator(
        SQLTableScan('supplier.csv', 'select * from S3Object;', False, 'ts',
                     query_plan, False))

    g = query_plan.add_operator(
        Group(
            ['_3'],
            [
                AggregateExpression(AggregateExpression.COUNT,
                                    lambda t_: t_['_0'])
                # count(s_suppkey)
            ],
            'g',
            query_plan,
            False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    ts.connect(g)
    g.connect(c)

    # Start the query
    query_plan.execute()

    # Assert the results
    for _ in c.tuples():
        num_rows += 1
        # print("{}:{}".format(num_rows, t))

    field_names = ['_0', '_1']

    assert c.tuples()[0] == field_names

    assert len(c.tuples()) == 25 + 1

    nation_24 = filter(
        lambda t: IndexedTuple.build(t, field_names)['_0'] == '24',
        c.tuples())[0]
    assert nation_24[1] == 393
    assert num_rows == 25 + 1

    # Write the metrics
    query_plan.print_metrics()
示例#6
0
def test_aggregate_count():
    """Tests a group by query with a count aggregate

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    # select count(*) from supplier.csv
    ts = query_plan.add_operator(
        SQLTableScan('supplier.csv', 'select * from S3Object;', False, 'ts',
                     query_plan, False))

    a = query_plan.add_operator(
        Aggregate(
            [
                AggregateExpression(AggregateExpression.COUNT,
                                    lambda t_: t_['_0'])
                # count(s_suppkey)
            ],
            'a',
            query_plan,
            False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(a)
    a.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    c.print_tuples()

    field_names = ['_0']

    tuples = c.tuples()

    assert tuples[0] == field_names
    assert IndexedTuple.build(tuples[1], field_names)['_0'] == 10000
    assert len(tuples) == 1 + 1

    # Write the metrics
    query_plan.print_metrics()
示例#7
0
def test_sort_desc():
    """Executes a sorted query. The results are collated.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    ts = query_plan.add_operator(
        SQLTableScan('supplier.csv', 'select * from S3Object '
                     'limit 3;', False, 'ts', query_plan, False))

    s = query_plan.add_operator(
        Sort([SortExpression('_5', float, 'DESC')], 's', query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    ts.connect(s)
    s.connect(c)

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    assert len(c.tuples()) == 3 + 1

    assert c.tuples()[0] == ['_0', '_1', '_2', '_3', '_4', '_5', '_6']

    assert c.tuples()[1] == [
        '1', 'Supplier#000000001', ' N kD4on9OM Ipw3,gf0JBoQDd7tgrzrddZ', '17',
        '27-918-335-1736', '5755.94', 'each slyly above the careful'
    ]
    assert c.tuples()[2] == [
        '3', 'Supplier#000000003', 'q1,G3Pj6OjIuUYfUoH18BFTKP5aU9bEV3', '1',
        '11-383-516-1199', '4192.40',
        'blithely silent requests after the express dependencies are sl'
    ]
    assert c.tuples()[3] == [
        '2', 'Supplier#000000002', '89eJ5ksX3ImxJQBvxObC,', '5',
        '15-679-861-2259', '4032.68', ' slyly bold instructions. idle dependen'
    ]

    # Write the metrics
    query_plan.print_metrics()
示例#8
0
def test_aggregate_empty():
    """Executes an aggregate query with no results returned. We tst this as it's somewhat peculiar with s3 select,
    in so much as s3 does not return column names when selecting data, though being an aggregate query we can generate
    the tuple field names based on the expressions supplied.

    TODO: Unsure whether the aggregate operator should return field names. It makes sense in one way, but is different
    to how all the other operators behave.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    # select sum(float(s_acctbal)) from supplier.csv limit 0
    ts = query_plan.add_operator(
        SQLTableScan('supplier.csv', 'select * from S3Object limit 0;', False,
                     'ts', query_plan, False))

    a = query_plan.add_operator(
        Aggregate([
            AggregateExpression(AggregateExpression.SUM,
                                lambda t_: float(t_['_5']))
        ], 'a', query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(a)
    a.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    field_names = ['_0']

    assert c.tuples()[0] == field_names
    assert len(c.tuples()) == 0 + 1

    # Write the metrics
    query_plan.print_metrics()
示例#9
0
def test_join_empty():
    """Executes a join where no records are returned. We tst this as it's somewhat peculiar with s3 select, in so much
    as s3 does not return column names when selecting data, meaning, unlike a traditional DBMS, no field names tuple
    should be present in the results.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    supplier_scan = query_plan.add_operator(
        SQLTableScan('supplier.csv', 'select * from S3Object limit 0;', False, 'supplier_scan', query_plan, False))

    supplier_project = query_plan.add_operator(
        Project([ProjectExpression(lambda t_: t_['_3'], 's_nationkey')], 'supplier_project', query_plan, False))

    nation_scan = query_plan.add_operator(
        SQLTableScan('nation.csv', 'select * from S3Object limit 0;', False, 'nation_scan', query_plan, False))

    nation_project = query_plan.add_operator(
        Project([ProjectExpression(lambda t_: t_['_0'], 'n_nationkey')], 'nation_project', query_plan, False))

    supplier_nation_join = query_plan.add_operator(
        HashJoin(JoinExpression('s_nationkey', 'n_nationkey'), 'supplier_nation_join', query_plan, False))

    collate = query_plan.add_operator(Collate('collate', query_plan, False))

    supplier_scan.connect(supplier_project)
    nation_scan.connect(nation_project)
    supplier_nation_join.connect_left_producer(supplier_project)
    supplier_nation_join.connect_right_producer(nation_project)
    supplier_nation_join.connect(collate)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"), gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in collate.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    assert len(collate.tuples()) == 0

    # Write the metrics
    query_plan.print_metrics()
示例#10
0
def run(parallel, use_pandas, buffer_size, table_parts, perc, path, format_):
    secure = False
    use_native = False
    print('')
    print("Indexing Benchmark")
    print("------------------")

    # Query plan
    query_plan = QueryPlan(is_async=parallel, buffer_size=buffer_size)

    # Scan Index Files
    upper = perc * 100
    scan = map(
        lambda p: query_plan.add_operator(
            SQLTableScan(
                '{}/data_{}.csv'.format(path, p), "select * from S3Object "
                " where cast(F0 as float) < {};".format(upper), format_,
                use_pandas, secure, use_native, 'scan_{}'.format(
                    p), query_plan, False)), range(0, table_parts))

    collate = query_plan.add_operator(Collate('collate', query_plan, False))

    map(lambda (p, o): o.connect(collate), enumerate(scan))

    # Plan settings
    print('')
    print("Settings")
    print("--------")
    print('')
    print('use_pandas: {}'.format(use_pandas))
    print("table parts: {}".format(table_parts))
    print('')

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../benchmark-output"),
                           gen_test_id() + "-" + str(table_parts))

    # Start the query
    query_plan.execute()
    print('Done')
    tuples = collate.tuples()

    # collate.print_tuples(tuples)

    # Write the metrics
    query_plan.print_metrics()

    # Shut everything down
    query_plan.stop()
示例#11
0
def test_scan_simple():
    """Executes a scan. The results are then collated.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    ts = query_plan.add_operator(
        TableScan('nation.csv', 'ts', query_plan, False))
    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    assert len(c.tuples()) == 25 + 1

    assert c.tuples()[0] == ['_0', '_1', '_2', '_3']

    assert c.tuples()[1] == [
        '0', 'ALGERIA', '0',
        ' haggle. carefully final deposits detect slyly agai'
    ]
    assert c.tuples()[2] == [
        '1', 'ARGENTINA', '1',
        'al foxes promise slyly according to the regular accounts. bold requests alon'
    ]
    assert c.tuples()[3] == [
        '2', 'BRAZIL', '1',
        'y alongside of the pending deposits. carefully special packages are about '
        'the ironic forges. slyly special '
    ]

    # Write the metrics
    query_plan.print_metrics()
示例#12
0
def test_aggregate_sum():
    """Tests a group by query with a sum aggregate

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    # select sum(float(s_acctbal)) from supplier.csv
    ts = query_plan.add_operator(
        SQLTableScan('supplier.csv', 'select * from S3Object;', False, 'ts',
                     query_plan, False))

    a = query_plan.add_operator(
        Aggregate([
            AggregateExpression(AggregateExpression.SUM,
                                lambda t_: float(t_['_5']))
        ], 'a', query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(a)
    a.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    field_names = ['_0']

    assert c.tuples()[0] == field_names
    assert round(IndexedTuple.build(c.tuples()[1], field_names)['_0'],
                 2) == 45103548.65
    assert len(c.tuples()) == 1 + 1

    # Write the metrics
    query_plan.print_metrics()
示例#13
0
def test_group_sum():
    """Tests a group by query with a sum aggregate

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    # select s_nationkey, sum(float(s_acctbal)) from supplier.csv group by s_nationkey
    ts = query_plan.add_operator(
        SQLTableScan('supplier.csv', 'select * from S3Object;', False, 'ts',
                     query_plan, False))

    g = query_plan.add_operator(
        Group(['_3'], [
            AggregateExpression(AggregateExpression.SUM,
                                lambda t_: float(t_['_5']))
        ], 'g', query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(g)
    g.connect(c)

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t_))

    field_names = ['_0', '_1']

    assert c.tuples()[0] == field_names

    assert len(c.tuples()) == 25 + 1

    nation_24 = filter(
        lambda t_: IndexedTuple.build(t_, field_names)['_0'] == '24',
        c.tuples())[0]
    assert round(nation_24[1], 2) == 1833872.56

    # Write the metrics
    query_plan.print_metrics()
示例#14
0
def test_filter_2():
    # Let's forget about the local filter for now. The pd._expr field of the PredicateExpression class is not well documented and it is needed for the Filter class (on line 102).
    """

    :return:
    """

    query_plan = QueryPlan(buffer_size=64, is_async=True, use_shared_mem=False)

    # Query plan
    '''
    ts = query_plan.add_operator(
        SQLTableScan('lineitem.csv', 'select * from S3Object limit 3;' , False, 'ts', query_plan, False))
    '''
    # using a 'use_native=True' argument will result in a None object being returned
    ts = query_plan.add_operator(
        SQLTableScan('random_strings_2.csv',
                     'select f1,f2  from S3Object limit 5;', Format.CSV, True,
                     False, False, 'ts', query_plan, False))

    def fn(df):
        df.columns = ["first_col", "second_col"]
        #We can change the types of the columns
        #df["first_col"] = df["first_col"].astype(np.int64)
        return df

    p = query_plan.add_operator(Project([], 'project', query_plan, False, fn))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(p)
    p.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    #assert 2 + 1 == len(c.tuples())
    print("Tuples:")
    print(c.tuples())
    # Write the metrics
    query_plan.print_metrics()
    print(ROOT_DIR)
示例#15
0
def test_project_empty():
    """Executes an projection query with no results returned. We tst this as it's somewhat peculiar with s3 select,
     in so much as s3 does not return column names when selecting data, meaning, unlike a traditional DBMS,
     no field names tuple should be present in the results.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    ts = query_plan.add_operator(
        SQLTableScan('nation.csv', "select * from S3Object "
                     "limit 0;", False, 'ts', query_plan, False))

    p = query_plan.add_operator(
        Project([
            ProjectExpression(lambda t_: t_['_2'], 'n_regionkey'),
            ProjectExpression(lambda t_: t_['_0'], 'n_nationkey'),
            ProjectExpression(lambda t_: t_['_3'], 'n_comment')
        ], 'p', query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(p)
    p.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    assert len(c.tuples()) == 0

    # Write the metrics
    query_plan.print_metrics()
示例#16
0
def run(use_pandas, secure, use_native, format_):
    profile_file_name = os.path.join(ROOT_DIR, "../benchmark-output/" + gen_test_id() + ".prof")
    os.remove(profile_file_name) if os.path.exists(profile_file_name) else None

    print("SQL Table Scan | Settings {}".format({'use_pandas': use_pandas, 'secure': secure, 'use_native': use_native}))

    query_plan = QueryPlan(is_async=True, buffer_size=0)

    # Query plan
    scan = query_plan.add_operator(
        SQLTableScan('lineitem.csv',
                     "select "
                     "  * "
                     "from "
                     "  S3Object limit 100000", format_,
                     use_pandas,
                     secure,
                     use_native,
                     'scan',
                     query_plan,
                     True))

    # scan.set_profiled(True, profile_file_name)

    null = query_plan.add_operator(
        Null('null', query_plan, True))

    scan.connect(null)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../benchmark-output"), gen_test_id())

    # Start the query
    query_plan.execute()

    query_plan.print_metrics()

    query_plan.stop()

    # Write the profile
    # s = pstats.Stats(profile_file_name)
    # s.strip_dirs().sort_stats("time").print_stats()

    print("SQL Table Scan | Done")
示例#17
0
def test_group_empty():
    """Executes a group where no records are returned. We tst this as it's somewhat peculiar with s3 select, in so much
    as s3 does not return column names when selecting data, meaning, unlike a traditional DBMS, no field names tuple
    should be present in the results.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    # select s_nationkey, sum(float(s_acctbal)) from supplier.csv group by s_nationkey
    ts = query_plan.add_operator(
        SQLTableScan('supplier.csv', 'select * from S3Object limit 0;', False,
                     'ts', query_plan, False))

    g = query_plan.add_operator(
        Group(['_3'], [
            AggregateExpression(AggregateExpression.SUM,
                                lambda t_: float(t_['_5']))
        ], 'g', query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(g)
    g.connect(c)

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    field_names = ['_0', '_1']

    assert c.tuples()[0] == field_names

    assert len(c.tuples()) == 0 + 1

    # Write the metrics
    query_plan.print_metrics()
示例#18
0
def test_random_scan_simple():
    """Executes a random scan. The results are then collated.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    random_col_defs = [
        RandomIntColumnDef(0, 9),
        RandomStringColumnDef(10, 20),
        RandomDateColumnDef(datetime.strptime('2017-01-01', '%Y-%m-%d'),
                            datetime.strptime('2018-01-01', '%Y-%m-%d'))
    ]

    random_table_scan = query_plan.add_operator(
        RandomTableScan(10,
                        random_col_defs,
                        'random_table_scan', query_plan,
                        False))

    collate = query_plan.add_operator(
        Collate('collate', query_plan, False))

    random_table_scan.connect(collate)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"), gen_test_id())

    # Start the query
    query_plan.execute()

    collate.print_tuples()

    # Write the metrics
    query_plan.print_metrics()

    # Assert the results
    assert len(collate.tuples()) == 10 + 1

    assert collate.tuples()[0] == ['_0', '_1', '_2']
示例#19
0
def test_filter_empty():
    """Executes a filter where no records are returned. We tst this as it's somewhat peculiar with s3 select, in so much
    as s3 does not return column names when selecting data, meaning, unlike a traditional DBMS, no field names tuple
    should be present in the results.

    :return: None
    """

    query_plan = QueryPlan()

    # Query plan
    ts = query_plan.add_operator(
        SQLTableScan('lineitem.csv', 'select * from S3Object limit 0;', False,
                     'ts', query_plan, False))

    f = query_plan.add_operator(
        Filter(
            PredicateExpression(lambda t_: cast(t_['_10'], timestamp) >= cast(
                '1996-03-01', timestamp)), 'f', query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(f)
    f.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    # Assert the results
    # num_rows = 0
    # for t in c.tuples():
    #     num_rows += 1
    #     print("{}:{}".format(num_rows, t))

    assert len(c.tuples()) == 0

    # Write the metrics
    query_plan.print_metrics()
示例#20
0
def main():
    parts = 32
    query_plan = QueryPlan(is_async=True, buffer_size=0)

    # Query plan
    lineitem_scan = map(lambda p:
                        query_plan.add_operator(
                            SQLTableScan(get_file_key('lineitem', True, p),
                                         "select * from S3Object;", Format.CSV,
                                         use_pandas=True, secure=False, use_native=False,
                                         name='scan_' + str(p), query_plan=query_plan,
                                         log_enabled=False)),
                        range(0, parts))

    collate = query_plan.add_operator(
        Collate('collate', query_plan, False))

    map(lambda (p, o): o.connect(collate), enumerate(lineitem_scan))

    query_plan.execute()
示例#21
0
def test_filter_1():
    """

    :return:
    """

    query_plan = QueryPlan(buffer_size=64, is_async=True, use_shared_mem=False)

    # Query plan

    ts = query_plan.add_operator(
        SQLTableScan(
            'tpch-sf1/lineitem_sharded/lineitem.csv.0',
            'select * from S3Object where cast(l_extendedprice as float) >= 0 and cast(l_extendedprice  as float)<= 910;',
            Format.CSV, True, False, False, 'ts', query_plan, False))

    # using a 'use_native=True' argument will result in a None object being returned
    '''
    ts = query_plan.add_operator(
        SQLTableScan('tpch-sf1/lineitem_sharded/lineitem.csv.0', 'select l_partkey  from S3Object limit 5;',Format.CSV , True, False,False, 'ts', query_plan, False))
    #random_strings_2.csv
    '''
    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(c)
    #f.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    #assert 2 + 1 == len(c.tuples())
    print("Tuples:")
    print(c.tuples())
    # Write the metrics
    query_plan.print_metrics()
    print(ROOT_DIR)
示例#22
0
    def sample_table(s3key, k, sort_exp):
        """
        Given a table name, return a random sample of records. Currently, the returned records are the first k tuples
        :param s3key: the s3 object name
        :param k: the number of tuples to return (the number added to the SQL Limit clause
        :param sort_exp: the sort expression in which the topk is chosen upon
        :return: the list of selected keys from the first k tuples in the table
        """
        projection = "CAST({} as {})".format(sort_exp.col_name,
                                             sort_exp.col_type.__name__)

        sql = "SELECT {} FROM S3Object LIMIT {}".format(projection, k)
        q_plan = QueryPlan(None, is_async=False)
        select_op = q_plan.add_operator(
            SQLTableScan(s3key, sql, True, True, False,
                         "sample_{}_scan".format(s3key), q_plan, False))

        from copy import deepcopy
        sample_topk_sort_exp = deepcopy(sort_exp)
        sample_topk_sort_exp.col_index = '_0'
        topk = q_plan.add_operator(
            Top(max_tuples=k,
                sort_expression=sample_topk_sort_exp,
                use_pandas=True,
                name="sampling_topk",
                query_plan=q_plan,
                log_enabled=False))
        collate = q_plan.add_operator(
            Collate("sample_{}_collate".format(s3key), q_plan, False))
        select_op.connect(topk)
        topk.connect(collate)

        q_plan.execute()

        q_plan.print_metrics()

        return collate.tuples(), select_op, q_plan
示例#23
0
def test_filter_arg(object_, sql_query):
    # Let's forget about the local filter for now. The pd._expr field of the PredicateExpression class is not well documented and it is needed for the Filter class (on line 102).
    """

    :return:
    """

    query_plan = QueryPlan(buffer_size=64, is_async=True, use_shared_mem=False)

    # Query plan
    '''
    ts = query_plan.add_operator(
        SQLTableScan('lineitem.csv', 'select * from S3Object limit 3;' , False, 'ts', query_plan, False))
    '''
    # using a 'use_native=True' argument will result in a None object being returned
    ts = query_plan.add_operator(
        SQLTableScan(object_, sql_query, Format.CSV, True, False, False, 'ts',
                     query_plan, False))

    c = query_plan.add_operator(Collate('c', query_plan, False))

    ts.connect(c)

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../tests-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    #assert 2 + 1 == len(c.tuples())
    print("Tuples:")
    print(c.tuples())
    # Write the metrics
    query_plan.print_metrics()
    print(ROOT_DIR)
示例#24
0
def run(parallel,
        use_pandas,
        buffer_size,
        table_first_part,
        table_parts,
        queried_columns,
        queried_aliases,
        castable_aliases,
        select_str,
        aggregate_column,
        filter_str,
        path,
        format_=Format.PARQUET):
    secure = False
    use_native = False
    print('')
    print("Parquet Aggregate Benchmark")
    print("------------------")

    # Query plan
    query_plan = QueryPlan(is_async=parallel, buffer_size=buffer_size)

    # SQL scan the file
    scan = map(
        lambda p: query_plan.add_operator(
            SQLTableScan(
                "{}/lineitem.{}.parquet".format(path, p
                                                ), "select {} from S3Object "
                "{};".format(select_str, filter_str), format_, use_pandas,
                secure, use_native, 'scan_{}'.format(p), query_plan, False)),
        range(table_first_part, table_first_part + table_parts))

    # project
    def fn(df):
        df.columns = queried_aliases
        df[castable_aliases] = df[castable_aliases].astype(np.double)
        return df

    project = map(
        lambda p: query_plan.add_operator(
            Project([], 'project_{}'.format(p), query_plan, False, fn)),
        range(table_first_part, table_first_part + table_parts))

    # aggregation
    def agg_fun(df):
        if aggregate_column in df:
            return pd.DataFrame({'sum': [sum(df[aggregate_column])]})
        else:
            return pd.DataFrame({'count': len(df)}, index=[0])

    aggregate = query_plan.add_operator(
        Aggregate([], True, 'agg', query_plan, False, agg_fun))

    collate = query_plan.add_operator(Collate('collate', query_plan, False))

    map(lambda (p, o): o.connect(project[p]), enumerate(scan))
    map(lambda (p, o): o.connect(aggregate), enumerate(project))
    aggregate.connect(collate)

    # Plan settings
    print('')
    print("Settings")
    print("--------")
    print('')
    print('use_pandas: {}'.format(use_pandas))
    print("table parts: {}".format(table_parts))
    print('')

    # Write the plan graph
    # query_plan.write_graph(os.path.join(ROOT_DIR, "../benchmark-output"), gen_test_id() + "-" + str(table_parts))

    # Start the query
    query_plan.execute()
    print('Done')
    tuples = collate.tuples()

    collate.print_tuples(tuples)

    # Write the metrics
    query_plan.print_metrics()

    # Shut everything down
    query_plan.stop()
示例#25
0
def run(sort_field, k, parallel, use_pandas, sort_order, buffer_size,
        table_first_part, table_parts, queried_columns, select_columns, path,
        format_):
    """
    Executes the baseline topk query by scanning a table and keeping track of the max/min records in a heap
    :return:
    """

    secure = False
    use_native = False
    print('')
    print("Top K Benchmark, ColumnScan. Sort Field: {}, Order: {}".format(
        sort_field, sort_order))
    print("----------------------")

    # Query plan
    query_plan = QueryPlan(is_async=parallel, buffer_size=buffer_size)

    # Sampling
    sample_scan = map(
        lambda p: query_plan.add_operator(
            #SQLTableScan("{}/lineitem.snappy.parquet.{}".format(path, p),
            SQLTableScan(
                "{}/lineitem.typed.1RowGroup.parquet.{}".format(
                    path, p), 'select {} from S3Object;'.format(
                        sort_field), format_, use_pandas, secure, use_native,
                'column_scan_{}'.format(p), query_plan, False)),
        range(table_first_part, table_first_part + table_parts))

    # Sampling project
    def project_fn1(df):
        df.columns = [sort_field]
        df[[sort_field]] = df[[sort_field]].astype(np.float)
        return df

    project_exprs = [ProjectExpression(lambda t_: t_['_0'], sort_field)]

    sample_project = map(
        lambda p: query_plan.add_operator(
            Project(project_exprs, 'sample_project_{}'.format(p), query_plan,
                    False, project_fn1)),
        range(table_first_part, table_first_part + table_parts))

    # TopK samples
    sort_expr = SortExpression(sort_field, float, sort_order)

    sample_topk = query_plan.add_operator(
        Top(k, sort_expr, use_pandas, 'sample_topk', query_plan, False))

    # Generate SQL command for second scan
    sql_gen = query_plan.add_operator(
        TopKFilterBuild(
            sort_order,
            'float',
            'select {} from S3object '.format(select_columns),
            #' CAST({} as float) '.format(sort_field), 'sql_gen', query_plan, False ))
            ' {} '.format(sort_field),
            'sql_gen',
            query_plan,
            False))

    # Scan
    scan = map(
        lambda p: query_plan.add_operator(
            #SQLTableScan("{}/lineitem.snappy.parquet.{}".format(path, p),
            SQLTableScan(
                "{}/lineitem.typed.1RowGroup.parquet.{}".format(path, p), "",
                format_, use_pandas, secure, use_native, 'scan_{}'.format(
                    p), query_plan, False)),
        range(table_first_part, table_first_part + table_parts))

    # Project
    def project_fn2(df):
        df.columns = queried_columns
        df[[sort_field]] = df[[sort_field]].astype(np.float)
        return df

    project_exprs = [ProjectExpression(lambda t_: t_['_0'], sort_field)]

    project = map(
        lambda p: query_plan.add_operator(
            Project(project_exprs, 'project_{}'.format(p), query_plan, False,
                    project_fn2)),
        range(table_first_part, table_first_part + table_parts))

    # TopK
    topk = map(
        lambda p: query_plan.add_operator(
            Top(k, sort_expr, use_pandas, 'topk_{}'.format(p),
                query_plan, False)),
        range(table_first_part, table_first_part + table_parts))

    # TopK reduce
    topk_reduce = query_plan.add_operator(
        Top(k, sort_expr, use_pandas, 'topk_reduce', query_plan, False))

    collate = query_plan.add_operator(Collate('collate', query_plan, False))

    #profile_path = '../benchmark-output/groupby/'
    #scan[0].set_profiled(True, os.path.join(ROOT_DIR, profile_path, gen_test_id() + "_scan_0" + ".prof"))
    #project[0].set_profiled(True, os.path.join(ROOT_DIR, profile_path, gen_test_id() + "_project_0" + ".prof"))
    #groupby[0].set_profiled(True, os.path.join(ROOT_DIR, profile_path, gen_test_id() + "_groupby_0" + ".prof"))
    #groupby_reduce.set_profiled(True, os.path.join(ROOT_DIR, profile_path, gen_test_id() + "_groupby_reduce" + ".prof"))
    #collate.set_profiled(True, os.path.join(ROOT_DIR, profile_path, gen_test_id() + "_collate" + ".prof"))

    map(lambda (p, o): o.connect(sample_project[p]), enumerate(sample_scan))
    map(lambda (p, o): o.connect(sample_topk), enumerate(sample_project))
    sample_topk.connect(sql_gen)

    map(lambda (p, o): sql_gen.connect(o), enumerate(scan))
    map(lambda (p, o): o.connect(project[p]), enumerate(scan))
    map(lambda (p, o): o.connect(topk[p]), enumerate(project))
    map(lambda (p, o): o.connect(topk_reduce), enumerate(topk))
    topk_reduce.connect(collate)

    # Plan settings
    print('')
    print("Settings")
    print("--------")
    print('')
    print('use_pandas: {}'.format(use_pandas))
    print("table parts: {}".format(table_parts))
    print('')

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../benchmark-output"),
                           gen_test_id() + "-" + str(table_parts))

    # Start the query
    query_plan.execute()
    print('Done')
    tuples = collate.tuples()

    collate.print_tuples(tuples)

    # Write the metrics
    query_plan.print_metrics()

    # Shut everything down
    query_plan.stop()
示例#26
0
def run(parallel, use_pandas, buffer_size, table_parts, perc, path, nthreads=16, format_=Format.CSV):
    secure = False
    use_native = False
    print('')
    print("Indexing Benchmark")
    print("------------------")

    # Query plan
    query_plan = QueryPlan(is_async=parallel, buffer_size=buffer_size)

    # Scan Index Files
    upper = perc * 100
    index_scan = map(lambda p:
                     query_plan.add_operator(
                         SQLTableScan('{}/index/index_f0_{}.csv'.format(path, p),
                                      "select first_byte, last_byte "
                                      " from S3Object "
                                      " where name  < {};".format(upper), format_,
                                      use_pandas, secure, use_native,
                                      'index_scan_{}'.format(p), query_plan,
                                      False)),
                     range(0, table_parts))

    # Range accesses 
    range_access = map(lambda p:
                       query_plan.add_operator(
                           TableRangeAccess('{}/data_{}.csv'.format(path, p),
                                            use_pandas, secure, use_native,
                                            'range_access_{}'.format(p), query_plan,
                                            False)),
                       range(0, table_parts))

    map(lambda o: o.set_nthreads(nthreads), range_access)

    collate = query_plan.add_operator(
        Collate('collate', query_plan, False))

    map(lambda (p, o): o.connect(range_access[p]), enumerate(index_scan))
    map(lambda (p, o): o.connect(collate), enumerate(range_access))

    # Plan settings
    print('')
    print("Settings")
    print("--------")
    print('')
    print('use_pandas: {}'.format(use_pandas))
    print("table parts: {}".format(table_parts))
    print('')

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../benchmark-output"), gen_test_id() + "-" + str(table_parts))

    # Start the query
    query_plan.execute()
    print('Done')
    tuples = collate.tuples()

    # collate.print_tuples(tuples)

    # Write the metrics
    query_plan.print_metrics()

    # Shut everything down
    query_plan.stop()
示例#27
0
def run(parallel, use_pandas, secure, use_native, buffer_size, lineitem_parts,
        part_parts, lineitem_sharded, part_sharded, other_parts, sf, fp_rate,
        expected_result, format_):
    """
    :return: None
    """

    print('')
    print("TPCH Q17 Bloom Join")
    print("-------------------")

    query_plan = QueryPlan(is_async=parallel, buffer_size=buffer_size)

    # Query plan
    part_scan = map(
        lambda p: query_plan.add_operator(
            tpch_q17.sql_scan_select_partkey_where_brand_container_op(
                part_sharded, p, part_parts, use_pandas, secure, use_native,
                'part_scan' + '_' + str(p), query_plan, sf, format_)),
        range(0, part_parts))

    part_project = map(
        lambda p: query_plan.add_operator(
            tpch_q17.project_partkey_op('part_project' + '_' + str(p),
                                        query_plan)), range(0, part_parts))

    part_lineitem_join_build_map = map(
        lambda p: query_plan.add_operator(
            Map('p_partkey', 'part_lineitem_join_build_map' + '_' + str(p),
                query_plan, False)), range(0, part_parts))

    part_bloom_create = query_plan.add_operator(
        tpch_q17.bloom_create_partkey_op(fp_rate, 'part_bloom_create',
                                         query_plan))

    lineitem_bloom_use = \
        map(lambda p:
            query_plan.add_operator(
                tpch_q17.bloom_scan_lineitem_select_orderkey_partkey_quantity_extendedprice_bloom_partkey_op(
                    lineitem_sharded,
                    p,
                    part_parts,
                    use_pandas,
                    secure,
                    use_native,
                    'lineitem_bloom_use' + '_' + str(p),
                    query_plan,
                    sf, format_)),
            range(0, lineitem_parts))

    lineitem_project = map(
        lambda p: query_plan.add_operator(
            tpch_q17.
            project_lineitem_filtered_orderkey_partkey_quantity_extendedprice_op(
                'lineitem_project' + '_' + str(p), query_plan)),
        range(0, lineitem_parts))

    part_lineitem_join_probe_map = map(
        lambda p: query_plan.add_operator(
            Map('l_partkey', 'part_lineitem_join_probe_map' + '_' + str(p),
                query_plan, False)), range(0, lineitem_parts))

    part_lineitem_join_build = map(
        lambda p: query_plan.add_operator(
            HashJoinBuild('p_partkey', 'part_lineitem_join_build' + '_' + str(
                p), query_plan, False)), range(0, other_parts))

    part_lineitem_join_probe = map(
        lambda p: query_plan.add_operator(
            HashJoinProbe(JoinExpression('p_partkey', 'l_partkey'),
                          'part_lineitem_join_probe' + '_' + str(
                              p), query_plan, False)), range(0, other_parts))

    lineitem_part_avg_group = map(
        lambda p: query_plan.add_operator(
            tpch_q17.group_partkey_avg_quantity_op(
                'lineitem_part_avg_group' + '_' + str(p), query_plan)),
        range(0, other_parts))

    lineitem_part_avg_group_project = map(
        lambda p: query_plan.add_operator(
            tpch_q17.project_partkey_avg_quantity_op(
                'lineitem_part_avg_group_project' + '_' + str(p), query_plan)),
        range(0, other_parts))

    part_lineitem_join_avg_group_join_build = \
        map(lambda p:
            query_plan.add_operator(
                HashJoinBuild('l_partkey',
                              'part_lineitem_join_avg_group_join_build' + '_' + str(p),
                              query_plan,
                              False)),
            range(0, other_parts))

    part_lineitem_join_avg_group_join_probe = \
        map(lambda p:
            query_plan.add_operator(
                HashJoinProbe(JoinExpression('l_partkey', 'l_partkey'),
                              'part_lineitem_join_avg_group_join_probe' + '_' + str(p),
                              query_plan,
                              False)),
            range(0, other_parts))

    lineitem_filter = map(
        lambda p: query_plan.add_operator(
            tpch_q17.filter_lineitem_quantity_op(
                'lineitem_filter' + '_' + str(p), query_plan)),
        range(0, other_parts))

    extendedprice_sum_aggregate = map(
        lambda p: query_plan.add_operator(
            tpch_q17.aggregate_sum_extendedprice_op(
                use_pandas, 'extendedprice_sum_aggregate' + '_' + str(p),
                query_plan)), range(0, other_parts))

    def aggregate_reduce_fn(df):
        sum1_ = df['_0'].astype(np.float).sum()
        return pd.DataFrame({'_0': [sum1_]})

    aggregate_reduce = query_plan.add_operator(
        Aggregate([
            AggregateExpression(AggregateExpression.SUM,
                                lambda t: float(t['_0']))
        ], use_pandas, 'aggregate_reduce', query_plan, False,
                  aggregate_reduce_fn))

    extendedprice_sum_aggregate_project = query_plan.add_operator(
        tpch_q17.project_avg_yearly_op('extendedprice_sum_aggregate_project',
                                       query_plan))

    collate = query_plan.add_operator(
        tpch_q17.collate_op('collate', query_plan))

    # Inline what we can
    map(lambda o: o.set_async(False), lineitem_project)
    map(lambda o: o.set_async(False), part_project)
    map(lambda o: o.set_async(False), lineitem_filter)
    map(lambda o: o.set_async(False), part_lineitem_join_probe_map)
    map(lambda o: o.set_async(False), part_lineitem_join_build_map)
    map(lambda o: o.set_async(False), lineitem_part_avg_group)
    map(lambda o: o.set_async(False), lineitem_part_avg_group_project)
    map(lambda o: o.set_async(False), extendedprice_sum_aggregate)
    extendedprice_sum_aggregate_project.set_async(False)

    # Connect the operators
    # part_scan.connect(part_project)
    map(lambda (p, o): o.connect(part_project[p]), enumerate(part_scan))
    # map(lambda (p, o): o.connect(part_bloom_create_map[p]), enumerate(part_project))
    map(lambda (p, o): o.connect(part_lineitem_join_build_map[p]),
        enumerate(part_project))

    connect_many_to_one(part_project, part_bloom_create)
    connect_one_to_many(part_bloom_create, lineitem_bloom_use)

    # part_project.connect(part_bloom_create)
    # map(lambda (p1, o1): map(lambda (p2, o2): o1.connect(o2), enumerate(part_bloom_create)),
    #     enumerate(part_bloom_create_map))

    # part_bloom_create.connect(lineitem_bloom_use)
    # map(lambda (p1, o1): map(lambda (p2, o2): o1.connect(o2), enumerate(lineitem_bloom_use)),
    #     enumerate(part_bloom_create))

    # lineitem_bloom_use.connect(lineitem_project)
    map(lambda (p, o): o.connect(lineitem_project[p]),
        enumerate(lineitem_bloom_use))

    # part_lineitem_join.connect_left_producer(part_project)
    map(
        lambda (p1, o1): map(lambda (p2, o2): o1.connect(o2),
                             enumerate(part_lineitem_join_build)),
        enumerate(part_lineitem_join_build_map))
    map(lambda (p, o): part_lineitem_join_probe[p].connect_build_producer(o),
        enumerate(part_lineitem_join_build))

    # part_lineitem_join.connect_right_producer(lineitem_project)
    # map(lambda (p, o): o.connect(part_lineitem_join_probe_map[p]), enumerate(lineitem_project))
    connect_many_to_many(lineitem_project, part_lineitem_join_probe_map)

    map(
        lambda (p1, o1): map(lambda (p2, o2): o2.connect_tuple_producer(o1),
                             enumerate(part_lineitem_join_probe)),
        enumerate(part_lineitem_join_probe_map))

    # part_lineitem_join.connect(lineitem_part_avg_group)
    map(lambda (p, o): o.connect(lineitem_part_avg_group[p]),
        enumerate(part_lineitem_join_probe))

    # lineitem_part_avg_group.connect(lineitem_part_avg_group_project)
    map(lambda (p, o): o.connect(lineitem_part_avg_group_project[p]),
        enumerate(lineitem_part_avg_group))

    # part_lineitem_join_avg_group_join.connect_left_producer(lineitem_part_avg_group_project)
    map(lambda (p, o): o.connect(part_lineitem_join_avg_group_join_build[p]),
        enumerate(lineitem_part_avg_group_project))

    # part_lineitem_join_avg_group_join.connect_right_producer(part_lineitem_join)
    map(
        lambda (p, o): part_lineitem_join_avg_group_join_probe[p].
        connect_build_producer(o),
        enumerate(part_lineitem_join_avg_group_join_build))
    map(
        lambda (p, o): part_lineitem_join_avg_group_join_probe[p].
        connect_tuple_producer(o), enumerate(part_lineitem_join_probe))

    # part_lineitem_join_avg_group_join.connect(lineitem_filter)
    map(lambda (p, o): o.connect(lineitem_filter[p]),
        enumerate(part_lineitem_join_avg_group_join_probe))

    # lineitem_filter.connect(extendedprice_sum_aggregate)
    map(lambda (p, o): o.connect(extendedprice_sum_aggregate[p]),
        enumerate(lineitem_filter))

    # extendedprice_sum_aggregate.connect(extendedprice_sum_aggregate_project)
    map(lambda (p, o): o.connect(aggregate_reduce),
        enumerate(extendedprice_sum_aggregate))
    aggregate_reduce.connect(extendedprice_sum_aggregate_project)

    # extendedprice_sum_aggregate_project.connect(collate)
    extendedprice_sum_aggregate_project.connect(collate)

    # Plan settings
    print('')
    print("Settings")
    print("--------")
    print('')
    print('use_pandas: {}'.format(use_pandas))
    print('secure: {}'.format(secure))
    print('use_native: {}'.format(use_native))
    print("lineitem parts: {}".format(lineitem_parts))
    print("part_parts: {}".format(part_parts))
    print("lineitem_sharded: {}".format(lineitem_sharded))
    print("part_sharded: {}".format(part_sharded))
    print("other_parts: {}".format(other_parts))
    print("fp_rate: {}".format(fp_rate))
    print("format: {}".format(format_))
    print('')

    # Write the plan graph
    query_plan.write_graph(os.path.join(ROOT_DIR, "../benchmark-output"),
                           gen_test_id())

    # Start the query
    query_plan.execute()

    tuples = collate.tuples()

    collate.print_tuples(tuples)

    # Write the metrics
    query_plan.print_metrics()

    # Shut everything down
    query_plan.stop()

    field_names = ['avg_yearly']

    assert len(tuples) == 1 + 1

    assert tuples[0] == field_names

    # NOTE: This result has been verified with the equivalent data and query on PostgreSQL
    if s3filter.util.constants.TPCH_SF == 10:
        assert round(
            float(tuples[1][0]), 10
        ) == 372414.2899999995  # TODO: This isn't correct but haven't checked tpch17 on 10 sf yet
    elif s3filter.util.constants.TPCH_SF == 1:
        numpy.testing.assert_approx_equal(float(tuples[1][0]), expected_result)
示例#28
0
def run_baseline_topk(stats, sort_field_index, sort_field, k, parallel,
                      use_pandas, sort_order, buffer_size, table_parts_start,
                      table_parts_end, tbl_s3key, format_, shards_path):

    secure = False
    use_native = False
    print('')
    print("Top K Benchmark, Baseline. Sort Field: {}, Order: {}, k: {}".format(
        sort_field, sort_order, k))
    print("----------------------")

    stats += ['baseline', shards_path, sort_field, sort_order, k, 0, 0]

    # Query plan
    query_plan = QueryPlan(is_async=parallel, buffer_size=buffer_size)

    # Sampling
    table_parts = table_parts_end - table_parts_start + 1
    per_part_samples = int(sample_size / table_parts)
    table_name = os.path.basename(tbl_s3key)

    # Scan
    scan = map(
        lambda p: query_plan.add_operator(
            SQLTableScan("{}.{}".format(shards_path, p
                                        ), "select * from S3Object;", format_,
                         use_pandas, secure, use_native, 'scan_{}'.format(
                             p), query_plan, False)),
        range(table_parts_start, table_parts_end + 1))

    # Project
    def project_fn(df):
        df.columns = [
            sort_field if x == sort_field_index else x for x in df.columns
        ]
        df[[sort_field]] = df[[sort_field]].astype(np.float)
        return df

    project_exprs = [ProjectExpression(lambda t_: t_['_0'], sort_field)]

    project = map(
        lambda p: query_plan.add_operator(
            Project(project_exprs, 'project_{}'.format(p), query_plan,
                    False, project_fn)),
        range(table_parts_start, table_parts_end + 1))

    # TopK
    sort_expr = [SortExpression(sort_field, float, sort_order)]
    topk = map(
        lambda p: query_plan.add_operator(
            Top(k, sort_expr, use_pandas, 'topk_{}'.format(p), query_plan,
                False)), range(table_parts_start, table_parts_end + 1))

    # TopK reduce
    topk_reduce = query_plan.add_operator(
        Top(k, sort_expr, use_pandas, 'topk_reduce', query_plan, False))

    collate = query_plan.add_operator(Collate('collate', query_plan, False))

    map(lambda (p, o): o.connect(project[p]), enumerate(scan))
    map(lambda (p, o): o.connect(topk[p]), enumerate(project))
    map(lambda (p, o): o.connect(topk_reduce), enumerate(topk))
    topk_reduce.connect(collate)

    # Start the query
    query_plan.execute()
    print('Done')

    # Write the metrics
    query_plan.print_metrics()

    # Shut everything down
    query_plan.stop()

    query_time = query_plan.total_elapsed_time
    cost, bytes_scanned, bytes_returned, rows = query_plan.cost()
    computation_cost = query_plan.computation_cost()
    data_cost = query_plan.data_cost()[0]

    stats += [
        0, 0, 0, query_time, rows, bytes_scanned, bytes_returned, data_cost,
        computation_cost, cost
    ]
示例#29
0
def run_head_table_sampling(stats,
                            sort_field_index,
                            sort_field,
                            k,
                            sample_size,
                            parallel,
                            use_pandas,
                            sort_order,
                            buffer_size,
                            table_parts_start,
                            table_parts_end,
                            tbl_s3key,
                            shards_path,
                            format_,
                            sampling_only=True):

    secure = False
    use_native = False
    print('')
    print(
        "Top K Benchmark, Head Table Sampling. Sort Field: {}, Order: {}, k: {}, Sample Size:{}"
        .format(sort_field, sort_order, k, sample_size))
    print("----------------------")

    stats += [
        'sampling_{}_{}'.format('head_table', 'non-filtered'), shards_path,
        sort_field, sort_order, k, sample_size, 1
    ]

    # Query plan
    query_plan = QueryPlan(is_async=parallel, buffer_size=buffer_size)

    # Sampling
    table_parts = table_parts_end - table_parts_start + 1
    per_part_samples = int(sample_size / table_parts)
    table_name = os.path.basename(tbl_s3key)
    sample_scan = map(
        lambda p: query_plan.add_operator(
            SQLTableScan(
                "{}.{}".format(shards_path, p),
                'select {} from S3Object limit {};'.format(
                    sort_field, per_part_samples), format_, use_pandas, secure,
                use_native, 'sample_scan_{}'.format(p), query_plan, False)),
        range(table_parts_start, table_parts_end + 1))

    # Sampling project
    def project_fn(df):
        df.columns = [sort_field]
        df[[sort_field]] = df[[sort_field]].astype(np.float)
        return df

    project_exprs = [ProjectExpression(lambda t_: t_['_0'], sort_field)]

    sample_project = map(
        lambda p: query_plan.add_operator(
            Project(project_exprs, 'sample_project_{}'.format(p), query_plan,
                    False, project_fn)),
        range(table_parts_start, table_parts_end + 1))

    # TopK samples
    sort_expr = [SortExpression(sort_field, float, sort_order)]
    sample_topk = map(
        lambda p: query_plan.add_operator(
            Top(k, sort_expr, use_pandas, 'sample_topk_{}'.format(p),
                query_plan, False)),
        range(table_parts_start, table_parts_end + 1))

    sample_topk_reduce = query_plan.add_operator(
        Top(k, sort_expr, use_pandas, 'sample_topk_reduce', query_plan, False))

    # Generate SQL command for second scan
    sql_gen = query_plan.add_operator(
        TopKFilterBuild(sort_order, 'float', 'select * from S3object ',
                        ' CAST({} as float) '.format(sort_field), 'sql_gen',
                        query_plan, False))

    if not sampling_only:
        # Scan
        scan = map(
            lambda p: query_plan.add_operator(
                SQLTableScan("{}.{}".format(shards_path, p), "", format_,
                             use_pandas, secure, use_native, 'scan_{}'.format(
                                 p), query_plan, False)),
            range(table_parts_start, table_parts_end + 1))

        # Project
        def project_fn(df):
            df.columns = [
                sort_field if x == sort_field_index else x for x in df.columns
            ]
            df[[sort_field]] = df[[sort_field]].astype(np.float)
            return df

        project_exprs = [ProjectExpression(lambda t_: t_['_0'], sort_field)]

        project = map(
            lambda p: query_plan.add_operator(
                Project(project_exprs, 'project_{}'.format(p), query_plan,
                        False, project_fn)),
            range(table_parts_start, table_parts_end + 1))

        # TopK
        topk = map(
            lambda p: query_plan.add_operator(
                Top(k, sort_expr, use_pandas, 'topk_{}'.format(p), query_plan,
                    False)), range(table_parts_start, table_parts_end + 1))

        # TopK reduce
        topk_reduce = query_plan.add_operator(
            Top(k, sort_expr, use_pandas, 'topk_reduce', query_plan, False))

    collate = query_plan.add_operator(Collate('collate', query_plan, False))

    map(lambda (p, o): o.connect(sample_project[p]), enumerate(sample_scan))
    map(lambda (p, o): o.connect(sample_topk[p]), enumerate(sample_project))
    map(lambda op: op.connect(sample_topk_reduce), sample_topk)
    sample_topk_reduce.connect(sql_gen)

    if not sampling_only:
        map(lambda (p, o): sql_gen.connect(o), enumerate(scan))
        map(lambda (p, o): o.connect(project[p]), enumerate(scan))
        map(lambda (p, o): o.connect(topk[p]), enumerate(project))
        map(lambda (p, o): o.connect(topk_reduce), enumerate(topk))
        topk_reduce.connect(collate)
    else:
        sql_gen.connect(collate)

    # Start the query
    query_plan.execute()
    print('Done')

    # Write the metrics
    query_plan.print_metrics()

    # Shut everything down
    query_plan.stop()

    sampling_time = query_plan.total_elapsed_time
    cost, bytes_scanned, bytes_returned, rows = query_plan.cost()
    computation_cost = query_plan.computation_cost()
    data_cost = query_plan.data_cost()[0]

    stats += [
        sql_gen.threshold, sampling_time, 0, sampling_time, rows,
        bytes_scanned, bytes_returned, data_cost, computation_cost, cost
    ]
示例#30
0
def run_local_indexed_sampling(stats,
                               sort_field_index,
                               sort_field,
                               k,
                               sample_size,
                               batch_size,
                               parallel,
                               use_pandas,
                               sort_order,
                               buffer_size,
                               table_parts_start,
                               table_parts_end,
                               tbl_s3key,
                               shards_path,
                               format_,
                               sampling_only=True):
    """
    Executes the randomly sampled topk query by firstly building a random sample, then extracting the filtering threshold
    Finally scanning the table to retrieve only the records beyond the threshold
    :return:
    """

    secure = False
    use_native = False
    n_threads = multiprocessing.cpu_count()

    print('')
    print("Top K Benchmark, Sampling. Sort Field: {}, Order: {}".format(
        sort_field, sort_order))
    print("----------------------")

    stats += [
        'sampling_{}_{}'.format('indexed', 'non-filtered'), shards_path,
        sort_field, sort_order, k, sample_size, batch_size
    ]

    # Query plan
    query_plan = QueryPlan(is_async=parallel, buffer_size=buffer_size)

    # Sampling
    tbl_smpler = query_plan.add_operator(
        TableRandomSampleGenerator(tbl_s3key, sample_size, batch_size,
                                   "table_sampler", query_plan, False))
    sample_scan = map(
        lambda p: query_plan.add_operator(
            TableRangeAccess(tbl_s3key, use_pandas, secure, use_native,
                             "sample_scan_{}".format(p), query_plan, False)),
        range(table_parts_start, table_parts_end + 1))
    map(lambda (i, op): sample_scan[i].set_nthreads(n_threads),
        enumerate(sample_scan))

    # sample_scan = query_plan.add_operator(
    #     TableRangeAccess(tbl_s3key, use_pandas, secure, use_native, "sample_scan_{}".format(p),
    #                      query_plan, False))
    # sample_scan.set_nthreads(n_threads)

    # Sampling project
    def project_fn(df):
        df.columns = [
            sort_field if x == sort_field_index else x for x in df.columns
        ]
        df = df[[sort_field]].astype(np.float, errors='ignore')
        return df

    project_exprs = [ProjectExpression(lambda t_: t_['_0'], sort_field)]

    sample_project = map(
        lambda p: query_plan.add_operator(
            Project(project_exprs, 'sample_project_{}'.format(p), query_plan,
                    False, project_fn)),
        range(table_parts_start, table_parts_end + 1))
    # sample_project = query_plan.add_operator(
    #                             Project(project_exprs, 'sample_project_{}'.format(p), query_plan, False, project_fn))

    # TopK samples
    sort_expr = [SortExpression(sort_field, float, sort_order)]
    sample_topk = map(
        lambda p: query_plan.add_operator(
            Top(k, sort_expr, use_pandas, 'sample_topk_{}'.format(p),
                query_plan, False)),
        range(table_parts_start, table_parts_end + 1))
    # sample_topk = query_plan.add_operator(
    #                 Top(k, sort_expr, use_pandas, 'sample_topk_{}'.format(p), query_plan, False))

    sample_topk_reduce = query_plan.add_operator(
        Top(k, sort_expr, use_pandas, 'sample_topk_reduce', query_plan, False))

    # Generate SQL command for second scan
    sql_gen = query_plan.add_operator(
        TopKFilterBuild(sort_order, 'float', 'select * from S3object ',
                        ' CAST({} as float) '.format(sort_field), 'sql_gen',
                        query_plan, False))
    if not sampling_only:
        # Scan
        scan = map(
            lambda p: query_plan.add_operator(
                SQLTableScan("{}.{}".format(shards_path, p), "", format_,
                             use_pandas, secure, use_native, 'scan_{}'.format(
                                 p), query_plan, False)),
            range(table_parts_start, table_parts_end + 1))

        # Project
        def project_fn(df):
            df.columns = [
                sort_field if x == sort_field_index else x for x in df.columns
            ]
            df[[sort_field]] = df[[sort_field]].astype(np.float)
            return df

        project_exprs = [ProjectExpression(lambda t_: t_['_0'], sort_field)]

        project = map(
            lambda p: query_plan.add_operator(
                Project(project_exprs, 'project_{}'.format(p), query_plan,
                        False, project_fn)),
            range(table_parts_start, table_parts_end + 1))

        # TopK
        topk = map(
            lambda p: query_plan.add_operator(
                Top(k, sort_expr, use_pandas, 'topk_{}'.format(p), query_plan,
                    False)), range(table_parts_start, table_parts_end + 1))

        # TopK reduce
        topk_reduce = query_plan.add_operator(
            Top(k, sort_expr, use_pandas, 'topk_reduce', query_plan, False))

    collate = query_plan.add_operator(Collate('collate', query_plan, False))

    map(lambda o: tbl_smpler.connect(o), sample_scan)
    map(lambda (p, o): o.connect(sample_project[p]), enumerate(sample_scan))
    map(lambda (p, o): o.connect(sample_topk[p]), enumerate(sample_project))
    map(lambda o: o.connect(sample_topk_reduce), sample_topk)
    sample_topk_reduce.connect(sql_gen)

    if not sampling_only:
        map(lambda (p, o): sql_gen.connect(o), enumerate(scan))
        map(lambda (p, o): o.connect(project[p]), enumerate(scan))
        map(lambda (p, o): o.connect(topk[p]), enumerate(project))
        map(lambda (p, o): o.connect(topk_reduce), enumerate(topk))
        topk_reduce.connect(collate)
    else:
        sql_gen.connect(collate)

    # Plan settings
    print('')
    print("Settings")
    print("--------")
    print('')
    print('use_pandas: {}'.format(use_pandas))
    print("table parts: {}".format(table_parts_end - table_parts_start))
    print('')

    # Write the plan graph
    # query_plan.write_graph(os.path.join(ROOT_DIR, "../benchmark-output"), gen_test_id() + "-" + str(table_parts))

    # Start the query
    query_plan.execute()
    print('Done')
    # tuples = collate.tuples()

    # collate.print_tuples(tuples)

    # Write the metrics
    query_plan.print_metrics()

    # Shut everything down
    query_plan.stop()

    sampling_time = query_plan.total_elapsed_time
    cost, bytes_scanned, bytes_returned, rows = query_plan.cost()
    computation_cost = query_plan.computation_cost()
    data_cost = query_plan.data_cost()[0]

    stats += [
        sql_gen.threshold, sampling_time, 0, sampling_time, rows,
        bytes_scanned, bytes_returned, data_cost, computation_cost, cost
    ]