def run(self, layers): """Risk plugin for Padang building survey """ # Extract data H = get_hazard_layer(layers) # Ground shaking E = get_exposure_layer(layers) # Building locations datatype = E.get_keywords()["datatype"] vclass_tag = "ITB_Class" if datatype.lower() == "osm": # Map from OSM attributes to the ITB building classes # Emap = osm2itb(E) print "osm2itb has not been implemented" elif datatype.lower() == "sigab": # Emap = sigabitb(E) print "sigab2itb has not been implemented" elif datatype.lower() == "itb": Emap = E # Interpolate hazard level to building locations Hi = assign_hazard_values_to_exposure_data(H, Emap, attribute_name="MMI") # Extract relevant numerical data coordinates = Emap.get_geometry() shaking = Hi.get_data() N = len(shaking) # List attributes to carry forward to result layer attributes = Emap.get_attribute_names() # Calculate building damage count50 = 0 count25 = 0 count10 = 0 count0 = 0 building_damage = [] for i in range(N): mmi = float(shaking[i]["MMI"]) building_class = Emap.get_data(vclass_tag, i) building_type = str(building_class) damage_params = vul_curves[building_type] beta = damage_params["beta"] median = damage_params["median"] msg = "Invalid parameter value for " + building_type verify(beta + median > 0.0, msg) percent_damage = lognormal_cdf(mmi, median=median, sigma=beta) * 100 # Collect shake level and calculated damage result_dict = {self.target_field: percent_damage, "MMI": mmi} # Carry all orginal attributes forward for key in attributes: result_dict[key] = Emap.get_data(key, i) # Record result for this feature building_damage.append(result_dict) # Debugging # if percent_damage > 0.01: # print mmi, percent_damage # Calculate statistics if percent_damage < 10: count0 += 1 if 10 <= percent_damage < 33: count10 += 1 if 33 <= percent_damage < 66: count25 += 1 if 66 <= percent_damage: count50 += 1 # fid.close() # Create report Hname = H.get_name() Ename = E.get_name() impact_summary = '<b>In case of "%s" the estimated impact to ' '"%s" ' "is:</b><br><br><p>" % (Hname, Ename) impact_summary += ( '<table border="0" width="320px">' " <tr><th><b>%s</b></th><th><b>%s</b></th></th>" " <tr></tr>" " <tr><td>%s:</td><td>%i</td></tr>" " <tr><td>%s (<10%%):</td><td>%i</td></tr>" " <tr><td>%s (10-33%%):</td><td>%i</td></tr>" " <tr><td>%s (33-66%%):</td><td>%i</td></tr>" " <tr><td>%s (66-100%%):</td><td>%i</td></tr>" "</table></font>" % ( tr("Buildings"), tr("Total"), tr("All"), N, tr("No damage"), count0, tr("Low damage"), count10, tr("Medium damage"), count25, tr("High damage"), count50, ) ) impact_summary += "<br>" # Blank separation row impact_summary += "<b>" + tr("Assumption") + ":</b><br>" # This is the proper text: # tr('Levels of impact are defined by post 2009 ' # 'Padang earthquake survey conducted by Geoscience ' # 'Australia and Institute of Teknologi Bandung.')) # tr('Unreinforced masonry is assumed where no ' # 'structural information is available.')) impact_summary += tr( "Levels of impact are defined by post 2009 " "Padang earthquake survey conducted by Geoscience " "Australia and Institute of Teknologi Bandung." ) impact_summary += tr("Unreinforced masonry is assumed where no " "structural information is available.") # Create style style_classes = [ dict(label=tr("No damage"), min=0, max=10, colour="#00ff00", transparency=0), dict(label=tr("Low damage"), min=10, max=33, colour="#ffff00", transparency=0), dict(label=tr("Medium damage"), min=33, max=66, colour="#ffaa00", transparency=0), dict(label=tr("High damage"), min=66, max=100, colour="#ff0000", transparency=0), ] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return V = Vector( data=building_damage, projection=E.get_projection(), geometry=coordinates, name="Estimated pct damage", keywords={"impact_summary": impact_summary}, style_info=style_info, ) return V
def run(self, layers): """Risk plugin for Padang building survey """ # Extract data H = get_hazard_layer(layers) # Ground shaking E = get_exposure_layer(layers) # Building locations question = get_question(H.get_name(), E.get_name(), self) # Map from different kinds of datasets to Padang vulnerability classes datatype = E.get_keywords()['datatype'] vclass_tag = 'VCLASS' if datatype.lower() == 'osm': # Map from OSM attributes Emap = osm2padang(E) elif datatype.lower() == 'sigab': # Map from SIGAB attributes Emap = sigab2padang(E) else: Emap = E # Interpolate hazard level to building locations I = assign_hazard_values_to_exposure_data(H, Emap, attribute_name='MMI') # Extract relevant numerical data attributes = I.get_data() N = len(I) # Calculate building damage count_high = count_medium = count_low = count_none = 0 for i in range(N): mmi = float(attributes[i]['MMI']) building_type = Emap.get_data(vclass_tag, i) damage_params = damage_curves[building_type] beta = damage_params['beta'] median = damage_params['median'] percent_damage = lognormal_cdf(mmi, median=median, sigma=beta) * 100 # Add calculated impact to existing attributes attributes[i][self.target_field] = percent_damage # Calculate statistics if percent_damage < 10: count_none += 1 if 10 <= percent_damage < 33: count_low += 1 if 33 <= percent_damage < 66: count_medium += 1 if 66 <= percent_damage: count_high += 1 # Generate impact report table_body = [question, TableRow([_('Buildings'), _('Total')], header=True), TableRow([_('All'), N]), TableRow([_('No damage'), count_none]), TableRow([_('Low damage'), count_low]), TableRow([_('Medium damage'), count_medium]), TableRow([_('High damage'), count_high])] table_body.append(TableRow(_('Notes'), header=True)) table_body.append(_('Levels of impact are defined by post 2009 ' 'Padang earthquake survey conducted by Geoscience ' 'Australia and Institute of Teknologi Bandung.')) table_body.append(_('Unreinforced masonry is assumed where no ' 'structural information is available.')) impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary map_title = _('Earthquake damage to buildings') # Create style style_classes = [dict(label=_('No damage'), min=0, max=10, colour='#00ff00', transparency=1), dict(label=_('Low damage'), min=10, max=33, colour='#ffff00', transparency=1), dict(label=_('Medium damage'), min=33, max=66, colour='#ffaa00', transparency=1), dict(label=_('High damage'), min=66, max=100, colour='#ff0000', transparency=1)] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return V = Vector(data=attributes, projection=E.get_projection(), geometry=E.get_geometry(), name='Estimated pct damage', keywords={'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title}, style_info=style_info) return V
def run(self, layers): """Risk plugin for Padang building survey """ # Extract data H = get_hazard_layer(layers) # Ground shaking E = get_exposure_layer(layers) # Building locations datatype = E.get_keywords()['datatype'] vclass_tag = 'ITB_Class' if datatype.lower() == 'osm': # Map from OSM attributes to the ITB building classes # Emap = osm2itb(E) print 'osm2itb has not been implemented' elif datatype.lower() == 'sigab': # Emap = sigabitb(E) print 'sigab2itb has not been implemented' elif datatype.lower() == 'itb': Emap = E # Interpolate hazard level to building locations Hi = assign_hazard_values_to_exposure_data(H, Emap, attribute_name='MMI') # Extract relevant numerical data coordinates = Emap.get_geometry() shaking = Hi.get_data() N = len(shaking) # List attributes to carry forward to result layer attributes = Emap.get_attribute_names() # Calculate building damage count50 = 0 count25 = 0 count10 = 0 count0 = 0 building_damage = [] for i in range(N): mmi = float(shaking[i]['MMI']) building_class = Emap.get_data(vclass_tag, i) building_type = str(building_class) damage_params = vul_curves[building_type] beta = damage_params['beta'] median = damage_params['median'] msg = 'Invalid parameter value for ' + building_type verify(beta + median > 0.0, msg) percent_damage = lognormal_cdf(mmi, median=median, sigma=beta) * 100 # Collect shake level and calculated damage result_dict = {self.target_field: percent_damage, 'MMI': mmi} # Carry all orginal attributes forward for key in attributes: result_dict[key] = Emap.get_data(key, i) # Record result for this feature building_damage.append(result_dict) # Debugging #if percent_damage > 0.01: # print mmi, percent_damage # Calculate statistics if percent_damage < 10: count0 += 1 if 10 <= percent_damage < 33: count10 += 1 if 33 <= percent_damage < 66: count25 += 1 if 66 <= percent_damage: count50 += 1 # fid.close() # Create report Hname = H.get_name() Ename = E.get_name() impact_summary = ('<b>In case of "%s" the estimated impact to ' '"%s" ' 'is:</b><br><br><p>' % (Hname, Ename)) impact_summary += ( '<table border="0" width="320px">' ' <tr><th><b>%s</b></th><th><b>%s</b></th></th>' ' <tr></tr>' ' <tr><td>%s:</td><td>%i</td></tr>' ' <tr><td>%s (<10%%):</td><td>%i</td></tr>' ' <tr><td>%s (10-33%%):</td><td>%i</td></tr>' ' <tr><td>%s (33-66%%):</td><td>%i</td></tr>' ' <tr><td>%s (66-100%%):</td><td>%i</td></tr>' '</table></font>' % (_('Buildings'), _('Total'), _('All'), N, _('No damage'), count0, _('Low damage'), count10, _('Medium damage'), count25, _('High damage'), count50)) impact_summary += '<br>' # Blank separation row impact_summary += '<b>' + _('Assumption') + ':</b><br>' # This is the proper text: #_('Levels of impact are defined by post 2009 ' # 'Padang earthquake survey conducted by Geoscience ' # 'Australia and Institute of Teknologi Bandung.')) #_('Unreinforced masonry is assumed where no ' # 'structural information is available.')) impact_summary += _('Levels of impact are defined by post 2009 ' 'Padang earthquake survey conducted by Geoscience ' 'Australia and Institute of Teknologi Bandung.') impact_summary += _('Unreinforced masonry is assumed where no ' 'structural information is available.') # Create style style_classes = [ dict(label=_('No damage'), min=0, max=10, colour='#00ff00', transparency=1), dict(label=_('Low damage'), min=10, max=33, colour='#ffff00', transparency=1), dict(label=_('Medium damage'), min=33, max=66, colour='#ffaa00', transparency=1), dict(label=_('High damage'), min=66, max=100, colour='#ff0000', transparency=1) ] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return V = Vector(data=building_damage, projection=E.get_projection(), geometry=coordinates, name='Estimated pct damage', keywords={'impact_summary': impact_summary}, style_info=style_info) return V
def run(self, layers): """Risk plugin for Padang building survey """ # Extract data H = get_hazard_layer(layers) # Ground shaking E = get_exposure_layer(layers) # Building locations question = get_question(H.get_name(), E.get_name(), self) # Map from different kinds of datasets to Padang vulnerability classes datatype = E.get_keywords()['datatype'] vclass_tag = 'VCLASS' if datatype.lower() == 'osm': # Map from OSM attributes Emap = osm2padang(E) elif datatype.lower() == 'sigab': # Map from SIGAB attributes Emap = sigab2padang(E) else: Emap = E # Interpolate hazard level to building locations I = assign_hazard_values_to_exposure_data(H, Emap, attribute_name='MMI') # Extract relevant numerical data attributes = I.get_data() N = len(I) # Calculate building damage count_high = count_medium = count_low = count_none = 0 for i in range(N): mmi = float(attributes[i]['MMI']) building_type = Emap.get_data(vclass_tag, i) damage_params = damage_curves[building_type] beta = damage_params['beta'] median = damage_params['median'] percent_damage = lognormal_cdf(mmi, median=median, sigma=beta) * 100 # Add calculated impact to existing attributes attributes[i][self.target_field] = percent_damage # Calculate statistics if percent_damage < 10: count_none += 1 if 10 <= percent_damage < 33: count_low += 1 if 33 <= percent_damage < 66: count_medium += 1 if 66 <= percent_damage: count_high += 1 # Generate impact report table_body = [ question, TableRow([tr('Buildings'), tr('Total')], header=True), TableRow([tr('All'), N]), TableRow([tr('No damage'), format_int(count_none)]), TableRow([tr('Low damage'), format_int(count_low)]), TableRow([tr('Medium damage'), format_int(count_medium)]), TableRow([tr('High damage'), format_int(count_high)]) ] table_body.append(TableRow(tr('Notes'), header=True)) table_body.append( tr('Levels of impact are defined by post 2009 ' 'Padang earthquake survey conducted by Geoscience ' 'Australia and Institute of Teknologi Bandung.')) table_body.append( tr('Unreinforced masonry is assumed where no ' 'structural information is available.')) impact_summary = Table(table_body).toNewlineFreeString() impact_table = impact_summary map_title = tr('Earthquake damage to buildings') # Create style style_classes = [ dict(label=tr('No damage'), min=0, max=10, colour='#00ff00', transparency=0), dict(label=tr('Low damage'), min=10, max=33, colour='#ffff00', transparency=0), dict(label=tr('Medium damage'), min=33, max=66, colour='#ffaa00', transparency=0), dict(label=tr('High damage'), min=66, max=100, colour='#ff0000', transparency=0) ] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return V = Vector(data=attributes, projection=E.get_projection(), geometry=E.get_geometry(), name='Estimated pct damage', keywords={ 'impact_summary': impact_summary, 'impact_table': impact_table, 'map_title': map_title, 'target_field': self.target_field }, style_info=style_info) return V
def run(self, layers): """Risk plugin for Padang building survey """ # Extract data H = get_hazard_layer(layers) # Ground shaking E = get_exposure_layer(layers) # Building locations datatype = E.get_keywords()['datatype'] vclass_tag = 'ITB_Class' if datatype.lower() == 'osm': # Map from OSM attributes to the ITB building classes # Emap = osm2itb(E) print 'osm2itb has not been implemented' elif datatype.lower() == 'sigab': # Emap = sigabitb(E) print 'sigab2itb has not been implemented' elif datatype.lower() == 'itb': Emap = E # Interpolate hazard level to building locations Hi = assign_hazard_values_to_exposure_data(H, Emap, attribute_name='MMI') # Extract relevant numerical data coordinates = Emap.get_geometry() shaking = Hi.get_data() N = len(shaking) # List attributes to carry forward to result layer attributes = Emap.get_attribute_names() # Calculate building damage count50 = 0 count25 = 0 count10 = 0 count0 = 0 building_damage = [] for i in range(N): mmi = float(shaking[i]['MMI']) building_class = Emap.get_data(vclass_tag, i) building_type = str(building_class) damage_params = vul_curves[building_type] beta = damage_params['beta'] median = damage_params['median'] msg = 'Invalid parameter value for ' + building_type verify(beta + median > 0.0, msg) percent_damage = lognormal_cdf(mmi, median=median, sigma=beta) * 100 # Collect shake level and calculated damage result_dict = {self.target_field: percent_damage, 'MMI': mmi} # Carry all orginal attributes forward for key in attributes: result_dict[key] = Emap.get_data(key, i) # Record result for this feature building_damage.append(result_dict) # Debugging #if percent_damage > 0.01: # print mmi, percent_damage # Calculate statistics if percent_damage < 10: count0 += 1 if 10 <= percent_damage < 33: count10 += 1 if 33 <= percent_damage < 66: count25 += 1 if 66 <= percent_damage: count50 += 1 # fid.close() # Create report Hname = H.get_name() Ename = E.get_name() impact_summary = ('<b>In case of "%s" the estimated impact to ' '"%s" ' 'is:</b><br><br><p>' % (Hname, Ename)) impact_summary += ('<table border="0" width="320px">' ' <tr><th><b>%s</b></th><th><b>%s</b></th></th>' ' <tr></tr>' ' <tr><td>%s:</td><td>%i</td></tr>' ' <tr><td>%s (<10%%):</td><td>%i</td></tr>' ' <tr><td>%s (10-33%%):</td><td>%i</td></tr>' ' <tr><td>%s (33-66%%):</td><td>%i</td></tr>' ' <tr><td>%s (66-100%%):</td><td>%i</td></tr>' '</table></font>' % (_('Buildings'), _('Total'), _('All'), N, _('No damage'), count0, _('Low damage'), count10, _('Medium damage'), count25, _('High damage'), count50)) impact_summary += '<br>' # Blank separation row impact_summary += '<b>' + _('Assumption') + ':</b><br>' # This is the proper text: #_('Levels of impact are defined by post 2009 ' # 'Padang earthquake survey conducted by Geoscience ' # 'Australia and Institute of Teknologi Bandung.')) #_('Unreinforced masonry is assumed where no ' # 'structural information is available.')) impact_summary += _('Levels of impact are defined by post 2009 ' 'Padang earthquake survey conducted by Geoscience ' 'Australia and Institute of Teknologi Bandung.') impact_summary += _('Unreinforced masonry is assumed where no ' 'structural information is available.') # Create style style_classes = [dict(label=_('No damage'), min=0, max=10, colour='#00ff00', transparency=1), dict(label=_('Low damage'), min=10, max=33, colour='#ffff00', transparency=1), dict(label=_('Medium damage'), min=33, max=66, colour='#ffaa00', transparency=1), dict(label=_('High damage'), min=66, max=100, colour='#ff0000', transparency=1)] style_info = dict(target_field=self.target_field, style_classes=style_classes) # Create vector layer and return V = Vector(data=building_damage, projection=E.get_projection(), geometry=coordinates, name='Estimated pct damage', keywords={'impact_summary': impact_summary}, style_info=style_info) return V