示例#1
0
    def compute_probability(self, total_fatalities):
        """Pager method compute probaility of fatality in each magnitude bin.

        [0, 10), [10,10^2), [10^2,10^3), [10^3, 10^4), [10^4, 10^5),
        [10^5,)

        :param total_fatalities: List of total fatalities in each MMI class.
        :type total_fatalities: int, float

        :returns: Probability of fatality magnitude bin from
            lognorm.cdf(bin, shape=Zeta, scale=total_fatalities)
        :rtype: list(float)
        """
        zeta = self.hardcoded_parameters['Zeta']
        magnitude_bin = self.hardcoded_parameters['magnitude_bin']
        cprob = numpy.ones_like(magnitude_bin, dtype=float)

        if total_fatalities > 1:
            cprob = log_normal_cdf(magnitude_bin,
                                   median=total_fatalities,
                                   sigma=zeta)

        cprob = numpy.append(cprob, 1.0)
        prob = numpy.hstack((cprob[0], numpy.diff(cprob))) * 100.0
        return self.round_to_sum(prob)
    def compute_fatality_rate(self):
        """Pager method to compute fatality rate.

        :returns: Fatality rate calculated as:
            lognorm.cdf(mmi, shape=Beta, scale=Theta)
        :rtype: dic
        """
        mmi_range = self.hardcoded_parameters['mmi_range']
        theta = self.hardcoded_parameters['Theta']
        beta = self.hardcoded_parameters['Beta']
        fatality_rate = {mmi: 0 if mmi < 4 else log_normal_cdf(
            mmi, median=theta, sigma=beta) for mmi in mmi_range}
        return fatality_rate
示例#3
0
    def compute_fatality_rate(self):
        """Pager method to compute fatality rate.

        :returns: Fatality rate calculated as:
            lognorm.cdf(mmi, shape=Beta, scale=Theta)
        :rtype: dic
        """
        mmi_range = self.hardcoded_parameters['mmi_range']
        theta = self.hardcoded_parameters['Theta']
        beta = self.hardcoded_parameters['Beta']
        fatality_rate = {mmi: 0 if mmi < 4 else log_normal_cdf(
            mmi, median=theta, sigma=beta) for mmi in mmi_range}
        return fatality_rate
    def compute_probability(self, total_fatalities):
        """Pager method compute probaility of fatality in each magnitude bin.

        [0, 10), [10,10^2), [10^2,10^3), [10^3, 10^4), [10^4, 10^5),
        [10^5,)

        :param total_fatalities: List of total fatalities in each MMI class.
        :type total_fatalities: int, float

        :returns: Probability of fatality magnitude bin from
            lognorm.cdf(bin, shape=Zeta, scale=total_fatalities)
        :rtype: list(float)
        """
        zeta = self.hardcoded_parameters['Zeta']
        magnitude_bin = self.hardcoded_parameters['magnitude_bin']
        cprob = numpy.ones_like(magnitude_bin, dtype=float)

        if total_fatalities > 1:
            cprob = log_normal_cdf(
                magnitude_bin, median=total_fatalities, sigma=zeta)

        cprob = numpy.append(cprob, 1.0)
        prob = numpy.hstack((cprob[0], numpy.diff(cprob))) * 100.0
        return self.round_to_sum(prob)