def test_native_raster_resolution(self): """Raster layer retains native resolution through Geoserver Raster layer can be uploaded and downloaded again with native resolution. This is one test for ticket #103 """ hazard_filename = os.path.join(UNITDATA, 'hazard', 'jakarta_flood_design.tif') # Get reference values H = read_layer(hazard_filename) A_ref = H.get_data(nan=True) depth_min_ref, depth_max_ref = H.get_extrema() # Upload to internal geonode hazard_layer = save_to_geonode(hazard_filename, user=self.user) hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name) # Download data again with native resolution bbox = get_bounding_box_string(hazard_filename) H = download(INTERNAL_SERVER_URL, hazard_name, bbox) A = H.get_data(nan=True) # Compare shapes msg = ('Shape of downloaded raster was [%i, %i]. ' 'Expected [%i, %i].' % (A.shape[0], A.shape[1], A_ref.shape[0], A_ref.shape[1])) assert numpy.allclose(A_ref.shape, A.shape, rtol=0, atol=0), msg # Compare extrema to values reference values (which have also been # verified by QGIS for this layer and tested in test_engine.py) depth_min, depth_max = H.get_extrema() msg = ('Extrema of downloaded file were [%f, %f] but ' 'expected [%f, %f]' % (depth_min, depth_max, depth_min_ref, depth_max_ref)) assert numpy.allclose([depth_min, depth_max], [depth_min_ref, depth_max_ref], rtol=1.0e-6, atol=1.0e-10), msg # Compare data number by number assert nanallclose(A, A_ref, rtol=1.0e-8)
def calculate(request, save_output=save_file_to_geonode): start = datetime.datetime.now() if request.method == 'GET': # FIXME: Add a basic form here to be able to generate the POST request. return HttpResponse('This should be accessed by robots, not humans.' 'In other words using HTTP POST instead of GET.') elif request.method == 'POST': data = request.POST impact_function_name = data['impact_function'] hazard_server = data['hazard_server'] hazard_layer = data['hazard'] exposure_server = data['exposure_server'] exposure_layer = data['exposure'] requested_bbox = data['bbox'] keywords = data['keywords'] if request.user.is_anonymous(): theuser = get_valid_user() else: theuser = request.user # Create entry in database calculation = Calculation(user=theuser, run_date=start, hazard_server=hazard_server, hazard_layer=hazard_layer, exposure_server=exposure_server, exposure_layer=exposure_layer, impact_function=impact_function_name, success=False) # Wrap main computation loop in try except to catch and present # messages and stack traces in the application try: # Get metadata haz_metadata = get_metadata(hazard_server, hazard_layer) exp_metadata = get_metadata(exposure_server, exposure_layer) # Determine common resolution in case of raster layers raster_resolution = get_common_resolution(haz_metadata, exp_metadata) # Get reconciled bounding boxes haz_bbox, exp_bbox, imp_bbox = get_bounding_boxes(haz_metadata, exp_metadata, requested_bbox) # Record layers to download download_layers = [(hazard_server, hazard_layer, haz_bbox), (exposure_server, exposure_layer, exp_bbox)] # Add linked layers if any FIXME: STILL TODO! # Get selected impact function plugins = get_admissible_plugins() msg = ('Could not find "%s" in "%s"' % ( impact_function_name, plugins.keys())) assert impact_function_name in plugins, msg impact_function = plugins.get(impact_function_name) impact_function_source = inspect.getsource(impact_function) # Record information calculation object and save it calculation.impact_function_source = impact_function_source calculation.bbox = bboxlist2string(imp_bbox) calculation.save() # Start computation msg = 'Performing requested calculation' #logger.info(msg) # Download selected layer objects layers = [] for server, layer_name, bbox in download_layers: msg = ('- Downloading layer %s from %s' % (layer_name, server)) #logger.info(msg) L = download(server, layer_name, bbox, raster_resolution) layers.append(L) # Calculate result using specified impact function msg = ('- Calculating impact using %s' % impact_function_name) #logger.info(msg) impact_file = calculate_impact(layers=layers, impact_fcn=impact_function) # Upload result to internal GeoServer msg = ('- Uploading impact layer %s' % impact_file.name) # Determine layer title for upload output_kw = impact_file.get_keywords() title = impact_file.get_name() + " using " + output_kw['hazard_title'] + \ " and " + output_kw['exposure_title'] result = save_output(impact_file.filename, title=title, user=theuser, overwrite=False) except Exception, e: # FIXME: Reimplement error saving for calculation. # FIXME (Ole): Why should we reimplement? # This is dangerous. Try to raise an exception # e.g. in get_metadata_from_layer. Things will silently fail. # See issue #170 #logger.error(e) errors = e.__str__() trace = exception_format(e) calculation.errors = errors calculation.stacktrace = trace calculation.save() jsondata = json.dumps({'errors': errors, 'stacktrace': trace}) return HttpResponse(jsondata, mimetype='application/json')
def test_the_earthquake_fatality_estimation_allen(self): """Fatality computation computed correctly with GeoServer Data """ # Simulate bounding box from application viewport_bbox_string = '104.3,-8.2,110.04,-5.17' # Upload exposure data for this test name = 'Population_2010' exposure_filename = '%s/%s.asc' % (TESTDATA, name) exposure_layer = save_to_geonode(exposure_filename, user=self.user, overwrite=True) workspace = exposure_layer.workspace layer_name = exposure_layer.name msg = 'Expected layer name to be "%s". Got %s' % (name, layer_name) assert layer_name == name.lower(), msg exposure_name = '%s:%s' % (workspace, layer_name) # Check metadata assert_bounding_box_matches(exposure_layer, exposure_filename) exp_bbox_string = get_bounding_box_string(exposure_filename) check_layer(exposure_layer, full=True) # Now we know that exposure layer is good, lets upload some # hazard layers and do the calculations filename = 'lembang_mmi_hazmap.asc' # Save hazard_filename = '%s/%s' % (TESTDATA, filename) hazard_layer = save_to_geonode(hazard_filename, user=self.user, overwrite=True) hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name) # Check metadata assert_bounding_box_matches(hazard_layer, hazard_filename) haz_bbox_string = get_bounding_box_string(hazard_filename) check_layer(hazard_layer, full=True) calculate_url = reverse('safe-calculate') # Run calculation c = Client() rv = c.post(calculate_url, data=dict( hazard_server=INTERNAL_SERVER_URL, hazard=hazard_name, exposure_server=INTERNAL_SERVER_URL, exposure=exposure_name, #bbox=viewport_bbox_string, bbox=exp_bbox_string, # This one reproduced the # crash for lembang impact_function='I T B Fatality Function', keywords='test,shakemap,usgs')) self.assertEqual(rv.status_code, 200) self.assertEqual(rv['Content-Type'], 'application/json') data = json.loads(rv.content) if 'errors' in data: errors = data['errors'] if errors is not None: msg = ('The server returned the error message: %s' % str(errors)) raise Exception(msg) assert 'success' in data assert 'hazard_layer' in data assert 'exposure_layer' in data assert 'run_duration' in data assert 'run_date' in data assert 'layer' in data assert data['success'] # Download result and check layer = data['layer'] layer_id = layer['id'] result_layer = download(INTERNAL_SERVER_URL, layer_id, get_bounding_box_string(hazard_filename)) assert os.path.exists(result_layer.filename)
def test_earthquake_exposure_plugin(self): """Population exposure to individual MMI levels can be computed """ # Upload exposure data for this test # FIXME (Ole): While this dataset is ok for testing, # note that is has been resampled without scaling # so numbers are about 25 times too large. # Consider replacing test populations dataset for good measures, # just in case any one accidentally started using this dataset # for real. name = 'Population_2010' exposure_filename = '%s/%s.asc' % (TESTDATA, name) exposure_layer = save_to_geonode(exposure_filename, user=self.user, overwrite=True) exposure_name = '%s:%s' % (exposure_layer.workspace, exposure_layer.name) # Check metadata assert_bounding_box_matches(exposure_layer, exposure_filename) exp_bbox_string = get_bounding_box_string(exposure_filename) check_layer(exposure_layer, full=True) # Upload hazard data filename = 'lembang_mmi_hazmap.asc' hazard_filename = '%s/%s' % (TESTDATA, filename) hazard_layer = save_to_geonode(hazard_filename, user=self.user, overwrite=True) hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name) # Check metadata assert_bounding_box_matches(hazard_layer, hazard_filename) haz_bbox_string = get_bounding_box_string(hazard_filename) check_layer(hazard_layer, full=True) calculate_url = reverse('safe-calculate') # Run calculation c = Client() rv = c.post(calculate_url, data=dict( hazard_server=INTERNAL_SERVER_URL, hazard=hazard_name, exposure_server=INTERNAL_SERVER_URL, exposure=exposure_name, bbox=haz_bbox_string, impact_function='Earthquake Building Damage Function', keywords='test,population,exposure,usgs')) self.assertEqual(rv.status_code, 200) self.assertEqual(rv['Content-Type'], 'application/json') data = json.loads(rv.content) if 'errors' in data: errors = data['errors'] if errors is not None: msg = ('The server returned the error message: %s' % str(errors)) raise Exception(msg) assert 'success' in data assert 'hazard_layer' in data assert 'exposure_layer' in data assert 'run_duration' in data assert 'run_date' in data assert 'layer' in data assert data['success'] # Download result and check layer_name = data['layer'].split('/')[-1] result_layer = download(INTERNAL_SERVER_URL, layer_name, get_bounding_box_string(hazard_filename)) assert os.path.exists(result_layer.filename) # Check calculated values keywords = result_layer.get_keywords() assert 'mmi-classes' in keywords assert 'affected-population' in keywords mmi_classes = [int(x) for x in keywords['mmi-classes'].split('_')] count = [float(x) for x in keywords['affected-population'].split('_')] # Brute force count for each population level population = download(INTERNAL_SERVER_URL, exposure_name, get_bounding_box_string(hazard_filename)) intensity = download(INTERNAL_SERVER_URL, hazard_name, get_bounding_box_string(hazard_filename)) # Extract data H = intensity.get_data(nan=0) P = population.get_data(nan=0) brutecount = {} for mmi in mmi_classes: brutecount[mmi] = 0 for i in range(P.shape[0]): for j in range(P.shape[1]): mmi = H[i, j] if not numpy.isnan(mmi): mmi_class = int(round(mmi)) pop = P[i, j] if not numpy.isnan(pop): brutecount[mmi_class] += pop for i, mmi in enumerate(mmi_classes): assert numpy.allclose(count[i], brutecount[mmi], rtol=1.0e-6)
def test_data_resampling_example(self): """Raster data is unchanged when going through geonode """ # Name file names for hazard level, exposure and expected fatalities hazard_filename = os.path.join(TESTDATA, '..', 'hazard', 'maumere_aos_depth_20m_land_wgs84.asc') exposure_filename = os.path.join(TESTDATA, 'maumere_pop_prj.shp') #------------ # Hazard data #------------ # Read hazard input data for reference H_ref = read_layer(hazard_filename) A_ref = H_ref.get_data() depth_min_ref, depth_max_ref = H_ref.get_extrema() # Upload to internal geonode hazard_layer = save_to_geonode(hazard_filename, user=self.user) hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name) # Download data again bbox = get_bounding_box_string(hazard_filename) # The biggest H = download(INTERNAL_SERVER_URL, hazard_name, bbox) A = H.get_data() depth_min, depth_max = H.get_extrema() # FIXME (Ole): The layer read from file is single precision only: # Issue #17 # Here's the explanation why interpolation below produce slightly # different results (but why?) # The layer read from file is single precision which may be due to # the way it is converted from ASC to TIF. In other words the # problem may be in raster.write_to_file. Float64 is # specified there, so this is a mystery. #print 'A', A.dtype # Double precision #print 'A_ref', A_ref.dtype # Single precision # Compare extrema to values from numpy array assert numpy.allclose(depth_max, numpy.nanmax(A), rtol=1.0e-12, atol=1.0e-12) assert numpy.allclose(depth_max_ref, numpy.nanmax(A_ref), rtol=1.0e-12, atol=1.0e-12) # Compare to reference assert numpy.allclose([depth_min, depth_max], [depth_min_ref, depth_max_ref], rtol=1.0e-12, atol=1.0e-12) # Compare extrema to values read off QGIS for this layer assert numpy.allclose([depth_min, depth_max], [0.0, 16.68], rtol=1.0e-6, atol=1.0e-10) # Investigate difference visually #from matplotlib.pyplot import matshow, show #matshow(A) #matshow(A_ref) #matshow(A - A_ref) #show() #print for i in range(A.shape[0]): for j in range(A.shape[1]): if not numpy.isnan(A[i, j]): err = abs(A[i, j] - A_ref[i, j]) if err > 0: msg = ('%i, %i: %.15f, %.15f, %.15f' % (i, j, A[i, j], A_ref[i, j], err)) raise Exception(msg) #if A[i,j] > 16: # print i, j, A[i, j], A_ref[i, j] # Compare elements (nan & numbers) id_nan = numpy.isnan(A) id_nan_ref = numpy.isnan(A_ref) assert numpy.all(id_nan == id_nan_ref) assert numpy.allclose(A[-id_nan], A_ref[-id_nan], rtol=1.0e-15, atol=1.0e-15) #print 'MAX', A[245, 283], A_ref[245, 283] #print 'MAX: %.15f %.15f %.15f' %(A[245, 283], A_ref[245, 283]) assert numpy.allclose(A[245, 283], A_ref[245, 283], rtol=1.0e-15, atol=1.0e-15) #-------------- # Exposure data #-------------- # Read exposure input data for reference E_ref = read_layer(exposure_filename) # Upload to internal geonode exposure_layer = save_to_geonode(exposure_filename, user=self.user) exposure_name = '%s:%s' % (exposure_layer.workspace, exposure_layer.name) # Download data again E = download(INTERNAL_SERVER_URL, exposure_name, bbox) # Check exposure data against reference coordinates = E.get_geometry() coordinates_ref = E_ref.get_geometry() assert numpy.allclose(coordinates, coordinates_ref, rtol=1.0e-12, atol=1.0e-12) attributes = E.get_data() attributes_ref = E_ref.get_data() for i, att in enumerate(attributes): att_ref = attributes_ref[i] for key in att: assert att[key] == att_ref[key] # Test safe's interpolation function I = assign_hazard_values_to_exposure_data(H, E, attribute_name='depth') icoordinates = I.get_geometry() I_ref = assign_hazard_values_to_exposure_data(H_ref, E_ref, attribute_name='depth') icoordinates_ref = I_ref.get_geometry() assert numpy.allclose(coordinates, icoordinates, rtol=1.0e-12, atol=1.0e-12) assert numpy.allclose(coordinates, icoordinates_ref, rtol=1.0e-12, atol=1.0e-12) iattributes = I.get_data() assert numpy.allclose(icoordinates, coordinates) N = len(icoordinates) assert N == 891 # Set tolerance for single precision until issue #17 has been fixed # It appears that the single precision leads to larger interpolation # errors rtol_issue17 = 2.0e-3 atol_issue17 = 1.0e-4 # Verify interpolated values with test result for i in range(N): interpolated_depth_ref = I_ref.get_data()[i]['depth'] interpolated_depth = iattributes[i]['depth'] assert nanallclose(interpolated_depth, interpolated_depth_ref, rtol=rtol_issue17, atol=atol_issue17) pointid = attributes[i]['POINTID'] if pointid == 263: #print i, pointid, attributes[i], #print interpolated_depth, coordinates[i] # Check that location is correct assert numpy.allclose(coordinates[i], [122.20367299, -8.61300358], rtol=1.0e-7, atol=1.0e-12) # This is known to be outside inundation area so should # near zero assert numpy.allclose(interpolated_depth, 0.0, rtol=1.0e-12, atol=1.0e-12) if pointid == 148: # Check that location is correct #print coordinates[i] assert numpy.allclose(coordinates[i], [122.2045912, -8.608483265], rtol=1.0e-7, atol=1.0e-12) # This is in an inundated area with a surrounding depths of # 4.531, 3.911 # 2.675, 2.583 assert interpolated_depth < 4.531 assert interpolated_depth < 3.911 assert interpolated_depth > 2.583 assert interpolated_depth > 2.675 #print interpolated_depth # This is a characterisation test for bilinear interpolation assert numpy.allclose(interpolated_depth, 3.62477215491, rtol=rtol_issue17, atol=1.0e-12) # Check that interpolated points are within range msg = ('Interpolated depth %f at point %i was outside extrema: ' '[%f, %f]. ' % (interpolated_depth, i, depth_min, depth_max)) if not numpy.isnan(interpolated_depth): assert depth_min <= interpolated_depth <= depth_max, msg
def test_keywords_download(self): """Keywords are downloaded from GeoServer along with layer data """ # Upload test data filenames = ['padang_tsunami_mw8.tif',] filenames = ['jakarta_flood_design.tif',] layers = [] paths = [] for filename in filenames: basename, ext = os.path.splitext(filename) path = os.path.join(UNITDATA, 'hazard', filename) # Upload to GeoNode layer = save_to_geonode(path, user=self.user, overwrite=True) # Record layer and file layers.append(layer) paths.append(path) # Check integrity for i, layer in enumerate(layers): # Get reference keyword dictionary from file L = read_layer(paths[i]) ref_keywords = L.get_keywords() # Get keywords metadata from GeoServer layer_name = '%s:%s' % (layer.workspace, layer.name) metadata = get_metadata(INTERNAL_SERVER_URL, layer_name) assert 'keywords' in metadata geo_keywords = metadata['keywords'] msg = ('Uploaded keywords were not as expected: I got %s ' 'but expected %s' % (geo_keywords, ref_keywords)) for kw in ref_keywords: # Check that all keywords were uploaded # It is OK for new automatic keywords to have appeared # (e.g. resolution) - see issue #171 assert kw in geo_keywords, msg assert ref_keywords[kw] == geo_keywords[kw], msg # Download data bbox = get_bounding_box_string(paths[i]) H = download(INTERNAL_SERVER_URL, layer_name, bbox) dwn_keywords = H.get_keywords() msg = ('Downloaded keywords were not as expected: I got %s ' 'but expected %s' % (dwn_keywords, geo_keywords)) assert geo_keywords == dwn_keywords, msg # Check that the layer and its .keyword file is there. msg = 'Downloaded layer %s was not found' % H.filename assert os.path.isfile(H.filename), msg kw_filename = os.path.splitext(H.filename)[0] + '.keywords' msg = 'Downloaded keywords file %s was not found' % kw_filename assert os.path.isfile(kw_filename), msg # Check that keywords are OK when reading downloaded file L = read_layer(H.filename) read_keywords = L.get_keywords() msg = ('Keywords in downloaded file %s were not as expected: ' 'I got %s but expected %s' % (kw_filename, read_keywords, geo_keywords)) assert read_keywords == geo_keywords, msg
def test_raster_scaling(self): """Raster layers can be scaled when resampled This is a test for ticket #168 Native test .asc data has ncols 5525 nrows 2050 cellsize 0.0083333333333333 Scaling is necessary for raster data that represents density such as population per km^2 """ for test_filename in ['jakarta_flood_design.tif']: raster_filename = os.path.join(UNITDATA, 'hazard', test_filename) # Get reference values R = read_layer(raster_filename) R_min_ref, R_max_ref = R.get_extrema() native_resolution = R.get_resolution() # Upload to internal geonode raster_layer = save_to_geonode(raster_filename, user=self.user) raster_name = '%s:%s' % (raster_layer.workspace, raster_layer.name) # Test for a range of resolutions for res in [0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002]: bbox = get_bounding_box_string(raster_filename) R = download(INTERNAL_SERVER_URL, raster_name, bbox, resolution=res) A_native = R.get_data(scaling=False) A_scaled = R.get_data(scaling=True) sigma = (R.get_resolution()[0] / native_resolution[0]) ** 2 # Compare extrema expected_scaled_max = sigma * numpy.nanmax(A_native) msg = ('Resampled raster was not rescaled correctly: ' 'max(A_scaled) was %f but expected %f' % (numpy.nanmax(A_scaled), expected_scaled_max)) assert numpy.allclose(expected_scaled_max, numpy.nanmax(A_scaled), rtol=1.0e0, atol=1.0e-1), msg expected_scaled_min = sigma * numpy.nanmin(A_native) msg = ('Resampled raster was not rescaled correctly: ' 'min(A_scaled) was %f but expected %f' % (numpy.nanmin(A_scaled), expected_scaled_min)) assert numpy.allclose(expected_scaled_min, numpy.nanmin(A_scaled), rtol=1.0e0, atol=1.0e-1), msg # Compare elementwise msg = 'Resampled raster was not rescaled correctly' assert nanallclose(A_native * sigma, A_scaled, rtol=1.0e0, atol=1.0e-1), msg # Check that it also works with manual scaling A_manual = R.get_data(scaling=sigma) msg = 'Resampled raster was not rescaled correctly' assert nanallclose(A_manual, A_scaled, rtol=1.0e0, atol=1.0e-1), msg # Check that an exception is raised for bad arguments try: R.get_data(scaling='bad') except: pass else: msg = 'String argument should have raised exception' raise Exception(msg) try: R.get_data(scaling='(1, 3)') except: pass else: msg = 'Tuple argument should have raised exception' raise Exception(msg) # Check None option without existence of density keyword A_none = R.get_data(scaling=None) msg = 'Data should not have changed' assert nanallclose(A_native, A_none, rtol=1.0e-0, atol=1.0e-1), msg # Try with None and density keyword R.keywords['density'] = 'true' A_none = R.get_data(scaling=None) msg = 'Resampled raster was not rescaled correctly' assert nanallclose(A_scaled, A_none, rtol=1.0e2, atol=1.0e2), msg R.keywords['density'] = 'Yes' A_none = R.get_data(scaling=None) msg = 'Resampled raster was not rescaled correctly' assert nanallclose(A_scaled, A_none, rtol=1.0e2, atol=1.0e2), msg R.keywords['density'] = 'False' A_none = R.get_data(scaling=None) msg = 'Data should not have changed' assert nanallclose(A_native, A_none, rtol=1.0e2, atol=1.0e2), msg R.keywords['density'] = 'no' A_none = R.get_data(scaling=None) msg = 'Data should not have changed' assert nanallclose(A_native, A_none, rtol=1.0e2, atol=1.0e2), msg
def test_specified_raster_resolution(self): """Raster layers can be downloaded with specific resolution This is another test for ticket #103 Native test data: maumere....asc ncols 931 nrows 463 cellsize 0.00018 Population_Jakarta ncols 638 nrows 649 cellsize 0.00045228819716044 Population_2010 ncols 5525 nrows 2050 cellsize 0.0083333333333333 Here we download it at a range of fixed resolutions that are both coarser and finer, and check that the dimensions of the downloaded matrix are as expected. We also check that the extrema of the subsampled matrix are sane """ hazard_filename = os.path.join(UNITDATA, 'hazard', 'jakarta_flood_design.tif') # Get reference values H = read_layer(hazard_filename) depth_min_ref, depth_max_ref = H.get_extrema() native_resolution = H.get_resolution() # Upload to internal geonode hazard_layer = save_to_geonode(hazard_filename, user=self.user) hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name) # Test for a range of resolutions for res in [0.01, 0.005, 0.002, 0.001, 0.0005, # Coarser 0.0002, 0.0001, 0.00006, 0.00003]: # Finer # Set bounding box bbox = get_bounding_box_string(hazard_filename) compare_extrema = True bb = bboxstring2list(bbox) # Download data at specified resolution H = download(INTERNAL_SERVER_URL, hazard_name, bbox, resolution=res) A = H.get_data() # Verify that data has the requested bobx and resolution actual_bbox = H.get_bounding_box() msg = ('Bounding box for %s was not as requested. I got %s ' 'but ' 'expected %s' % (hazard_name, actual_bbox, bb)) assert numpy.allclose(actual_bbox, bb, rtol=1.0e-6) # FIXME (Ole): How do we sensibly resolve the issue with # resx, resy vs one resolution (issue #173) actual_resolution = H.get_resolution()[0] # FIXME (Ole): Resolution is often far from the requested # see issue #102 # Here we have to accept up to 5% tolerance102 = 5.0e-2 msg = ('Resolution of %s was not as requested. I got %s but ' 'expected %s' % (hazard_name, actual_resolution, res)) assert numpy.allclose(actual_resolution, res, rtol=tolerance102), msg # Determine expected shape from bbox (W, S, E, N) ref_rows = int(round((bb[3] - bb[1]) / res)) ref_cols = int(round((bb[2] - bb[0]) / res)) # Compare shapes (generally, this may differ by 1) msg = ('Shape of downloaded raster was [%i, %i]. ' 'Expected [%i, %i].' % (A.shape[0], A.shape[1], ref_rows, ref_cols)) assert (ref_rows == A.shape[0] and ref_cols == A.shape[1]), msg # Assess that the range of the interpolated data is sane if not compare_extrema: continue # For these test sets we get exact match of the minimum msg = ('Minimum of %s resampled at resolution %f ' 'was %f. Expected %f.' % (hazard_layer.name, res, numpy.nanmin(A), depth_min_ref)) assert numpy.allclose(depth_min_ref, numpy.nanmin(A), rtol=0.0, atol=0.0), msg # At the maximum it depends on the subsampling msg = ('Maximum of %s resampled at resolution %f ' 'was %f. Expected %f.' % (hazard_layer.name, res, numpy.nanmax(A), depth_max_ref)) if res < native_resolution[0]: # When subsampling to finer resolutions we expect a # close match assert numpy.allclose(depth_max_ref, numpy.nanmax(A), rtol=1.0e-10, atol=1.0e-8), msg elif res < native_resolution[0] * 10: # When upsampling to coarser resolutions we expect # ballpark match (~20%) assert numpy.allclose(depth_max_ref, numpy.nanmax(A), rtol=0.17, atol=0.0), msg else: # Upsampling to very coarse resolutions, just want sanity assert 0 < numpy.nanmax(A) <= depth_max_ref
def test_keywords_download(self): """Keywords are downloaded from GeoServer along with layer data """ # Upload test data filenames = [ 'padang_tsunami_mw8.tif', ] filenames = [ 'jakarta_flood_design.tif', ] layers = [] paths = [] for filename in filenames: basename, ext = os.path.splitext(filename) path = os.path.join(UNITDATA, 'hazard', filename) # Upload to GeoNode layer = save_to_geonode(path, user=self.user, overwrite=True) # Record layer and file layers.append(layer) paths.append(path) # Check integrity for i, layer in enumerate(layers): # Get reference keyword dictionary from file L = read_layer(paths[i]) ref_keywords = L.get_keywords() # Get keywords metadata from GeoServer layer_name = '%s:%s' % (layer.workspace, layer.name) metadata = get_metadata(INTERNAL_SERVER_URL, layer_name) assert 'keywords' in metadata geo_keywords = metadata['keywords'] msg = ('Uploaded keywords were not as expected: I got %s ' 'but expected %s' % (geo_keywords, ref_keywords)) for kw in ref_keywords: # Check that all keywords were uploaded # It is OK for new automatic keywords to have appeared # (e.g. resolution) - see issue #171 assert kw in geo_keywords, msg assert ref_keywords[kw] == geo_keywords[kw], msg # Download data bbox = get_bounding_box_string(paths[i]) H = download(INTERNAL_SERVER_URL, layer_name, bbox) dwn_keywords = H.get_keywords() msg = ('Downloaded keywords were not as expected: I got %s ' 'but expected %s' % (dwn_keywords, geo_keywords)) assert geo_keywords == dwn_keywords, msg # Check that the layer and its .keyword file is there. msg = 'Downloaded layer %s was not found' % H.filename assert os.path.isfile(H.filename), msg kw_filename = os.path.splitext(H.filename)[0] + '.keywords' msg = 'Downloaded keywords file %s was not found' % kw_filename assert os.path.isfile(kw_filename), msg # Check that keywords are OK when reading downloaded file L = read_layer(H.filename) read_keywords = L.get_keywords() msg = ('Keywords in downloaded file %s were not as expected: ' 'I got %s but expected %s' % (kw_filename, read_keywords, geo_keywords)) assert read_keywords == geo_keywords, msg
def test_raster_scaling(self): """Raster layers can be scaled when resampled This is a test for ticket #168 Native test .asc data has ncols 5525 nrows 2050 cellsize 0.0083333333333333 Scaling is necessary for raster data that represents density such as population per km^2 """ for test_filename in ['jakarta_flood_design.tif']: raster_filename = os.path.join(UNITDATA, 'hazard', test_filename) # Get reference values R = read_layer(raster_filename) R_min_ref, R_max_ref = R.get_extrema() native_resolution = R.get_resolution() # Upload to internal geonode raster_layer = save_to_geonode(raster_filename, user=self.user) raster_name = '%s:%s' % (raster_layer.workspace, raster_layer.name) # Test for a range of resolutions for res in [0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002]: bbox = get_bounding_box_string(raster_filename) R = download(INTERNAL_SERVER_URL, raster_name, bbox, resolution=res) A_native = R.get_data(scaling=False) A_scaled = R.get_data(scaling=True) sigma = (R.get_resolution()[0] / native_resolution[0])**2 # Compare extrema expected_scaled_max = sigma * numpy.nanmax(A_native) msg = ('Resampled raster was not rescaled correctly: ' 'max(A_scaled) was %f but expected %f' % (numpy.nanmax(A_scaled), expected_scaled_max)) assert numpy.allclose(expected_scaled_max, numpy.nanmax(A_scaled), rtol=1.0e0, atol=1.0e-1), msg expected_scaled_min = sigma * numpy.nanmin(A_native) msg = ('Resampled raster was not rescaled correctly: ' 'min(A_scaled) was %f but expected %f' % (numpy.nanmin(A_scaled), expected_scaled_min)) assert numpy.allclose(expected_scaled_min, numpy.nanmin(A_scaled), rtol=1.0e0, atol=1.0e-1), msg # Compare elementwise msg = 'Resampled raster was not rescaled correctly' assert nanallclose(A_native * sigma, A_scaled, rtol=1.0e0, atol=1.0e-1), msg # Check that it also works with manual scaling A_manual = R.get_data(scaling=sigma) msg = 'Resampled raster was not rescaled correctly' assert nanallclose(A_manual, A_scaled, rtol=1.0e0, atol=1.0e-1), msg # Check that an exception is raised for bad arguments try: R.get_data(scaling='bad') except: pass else: msg = 'String argument should have raised exception' raise Exception(msg) try: R.get_data(scaling='(1, 3)') except: pass else: msg = 'Tuple argument should have raised exception' raise Exception(msg) # Check None option without existence of density keyword A_none = R.get_data(scaling=None) msg = 'Data should not have changed' assert nanallclose(A_native, A_none, rtol=1.0e-0, atol=1.0e-1), msg # Try with None and density keyword R.keywords['density'] = 'true' A_none = R.get_data(scaling=None) msg = 'Resampled raster was not rescaled correctly' assert nanallclose(A_scaled, A_none, rtol=1.0e2, atol=1.0e2), msg R.keywords['density'] = 'Yes' A_none = R.get_data(scaling=None) msg = 'Resampled raster was not rescaled correctly' assert nanallclose(A_scaled, A_none, rtol=1.0e2, atol=1.0e2), msg R.keywords['density'] = 'False' A_none = R.get_data(scaling=None) msg = 'Data should not have changed' assert nanallclose(A_native, A_none, rtol=1.0e2, atol=1.0e2), msg R.keywords['density'] = 'no' A_none = R.get_data(scaling=None) msg = 'Data should not have changed' assert nanallclose(A_native, A_none, rtol=1.0e2, atol=1.0e2), msg
def test_specified_raster_resolution(self): """Raster layers can be downloaded with specific resolution This is another test for ticket #103 Native test data: maumere....asc ncols 931 nrows 463 cellsize 0.00018 Population_Jakarta ncols 638 nrows 649 cellsize 0.00045228819716044 Population_2010 ncols 5525 nrows 2050 cellsize 0.0083333333333333 Here we download it at a range of fixed resolutions that are both coarser and finer, and check that the dimensions of the downloaded matrix are as expected. We also check that the extrema of the subsampled matrix are sane """ hazard_filename = os.path.join(UNITDATA, 'hazard', 'jakarta_flood_design.tif') # Get reference values H = read_layer(hazard_filename) depth_min_ref, depth_max_ref = H.get_extrema() native_resolution = H.get_resolution() # Upload to internal geonode hazard_layer = save_to_geonode(hazard_filename, user=self.user) hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name) # Test for a range of resolutions for res in [ 0.01, 0.005, 0.002, 0.001, 0.0005, # Coarser 0.0002, 0.0001, 0.00006, 0.00003 ]: # Finer # Set bounding box bbox = get_bounding_box_string(hazard_filename) compare_extrema = True bb = bboxstring2list(bbox) # Download data at specified resolution H = download(INTERNAL_SERVER_URL, hazard_name, bbox, resolution=res) A = H.get_data() # Verify that data has the requested bobx and resolution actual_bbox = H.get_bounding_box() msg = ('Bounding box for %s was not as requested. I got %s ' 'but ' 'expected %s' % (hazard_name, actual_bbox, bb)) assert numpy.allclose(actual_bbox, bb, rtol=1.0e-6) # FIXME (Ole): How do we sensibly resolve the issue with # resx, resy vs one resolution (issue #173) actual_resolution = H.get_resolution()[0] # FIXME (Ole): Resolution is often far from the requested # see issue #102 # Here we have to accept up to 5% tolerance102 = 5.0e-2 msg = ('Resolution of %s was not as requested. I got %s but ' 'expected %s' % (hazard_name, actual_resolution, res)) assert numpy.allclose(actual_resolution, res, rtol=tolerance102), msg # Determine expected shape from bbox (W, S, E, N) ref_rows = int(round((bb[3] - bb[1]) / res)) ref_cols = int(round((bb[2] - bb[0]) / res)) # Compare shapes (generally, this may differ by 1) msg = ('Shape of downloaded raster was [%i, %i]. ' 'Expected [%i, %i].' % (A.shape[0], A.shape[1], ref_rows, ref_cols)) assert (ref_rows == A.shape[0] and ref_cols == A.shape[1]), msg # Assess that the range of the interpolated data is sane if not compare_extrema: continue # For these test sets we get exact match of the minimum msg = ('Minimum of %s resampled at resolution %f ' 'was %f. Expected %f.' % (hazard_layer.name, res, numpy.nanmin(A), depth_min_ref)) assert numpy.allclose(depth_min_ref, numpy.nanmin(A), rtol=0.0, atol=0.0), msg # At the maximum it depends on the subsampling msg = ('Maximum of %s resampled at resolution %f ' 'was %f. Expected %f.' % (hazard_layer.name, res, numpy.nanmax(A), depth_max_ref)) if res < native_resolution[0]: # When subsampling to finer resolutions we expect a # close match assert numpy.allclose(depth_max_ref, numpy.nanmax(A), rtol=1.0e-10, atol=1.0e-8), msg elif res < native_resolution[0] * 10: # When upsampling to coarser resolutions we expect # ballpark match (~20%) assert numpy.allclose(depth_max_ref, numpy.nanmax(A), rtol=0.17, atol=0.0), msg else: # Upsampling to very coarse resolutions, just want sanity assert 0 < numpy.nanmax(A) <= depth_max_ref
def calculate(request, save_output=save_file_to_geonode): start = datetime.datetime.now() if request.method == 'GET': # FIXME: Add a basic form here to be able to generate the POST request. return HttpResponse('This should be accessed by robots, not humans.' 'In other words using HTTP POST instead of GET.') elif request.method == 'POST': data = request.POST impact_function_name = data['impact_function'] hazard_server = data['hazard_server'] hazard_layer = data['hazard'] exposure_server = data['exposure_server'] exposure_layer = data['exposure'] requested_bbox = data['bbox'] keywords = data['keywords'] if request.user.is_anonymous(): theuser = get_valid_user() else: theuser = request.user # Create entry in database calculation = Calculation(user=theuser, run_date=start, hazard_server=hazard_server, hazard_layer=hazard_layer, exposure_server=exposure_server, exposure_layer=exposure_layer, impact_function=impact_function_name, success=False) # Wrap main computation loop in try except to catch and present # messages and stack traces in the application try: # Get metadata haz_metadata = get_metadata(hazard_server, hazard_layer) exp_metadata = get_metadata(exposure_server, exposure_layer) # Determine common resolution in case of raster layers raster_resolution = get_common_resolution(haz_metadata, exp_metadata) # Get reconciled bounding boxes haz_bbox, exp_bbox, imp_bbox = get_bounding_boxes( haz_metadata, exp_metadata, requested_bbox) # Record layers to download download_layers = [(hazard_server, hazard_layer, haz_bbox), (exposure_server, exposure_layer, exp_bbox)] # Add linked layers if any FIXME: STILL TODO! # Get selected impact function plugins = get_admissible_plugins() msg = ('Could not find "%s" in "%s"' % (impact_function_name, plugins.keys())) assert impact_function_name in plugins, msg impact_function = plugins.get(impact_function_name) impact_function_source = inspect.getsource(impact_function) # Record information calculation object and save it calculation.impact_function_source = impact_function_source calculation.bbox = bboxlist2string(imp_bbox) calculation.save() # Start computation msg = 'Performing requested calculation' #logger.info(msg) # Download selected layer objects layers = [] for server, layer_name, bbox in download_layers: msg = ('- Downloading layer %s from %s' % (layer_name, server)) #logger.info(msg) L = download(server, layer_name, bbox, raster_resolution) layers.append(L) # Calculate result using specified impact function msg = ('- Calculating impact using %s' % impact_function_name) #logger.info(msg) impact_file = calculate_impact(layers=layers, impact_fcn=impact_function) # Upload result to internal GeoServer msg = ('- Uploading impact layer %s' % impact_file.name) # Determine layer title for upload output_kw = impact_file.get_keywords() title = impact_file.get_name() + " using " + output_kw['hazard_title'] + \ " and " + output_kw['exposure_title'] result = save_output(impact_file.filename, title=title, user=theuser, overwrite=False) except Exception, e: # FIXME: Reimplement error saving for calculation. # FIXME (Ole): Why should we reimplement? # This is dangerous. Try to raise an exception # e.g. in get_metadata_from_layer. Things will silently fail. # See issue #170 #logger.error(e) errors = e.__str__() trace = exception_format(e) calculation.errors = errors calculation.stacktrace = trace calculation.save() jsondata = json.dumps({'errors': errors, 'stacktrace': trace}) return HttpResponse(jsondata, mimetype='application/json')
def test_the_earthquake_fatality_estimation_allen(self): """Fatality computation computed correctly with GeoServer Data """ # Simulate bounding box from application viewport_bbox_string = '104.3,-8.2,110.04,-5.17' # Upload exposure data for this test name = 'Population_2010' exposure_filename = '%s/%s.asc' % (TESTDATA, name) exposure_layer = save_to_geonode(exposure_filename, user=self.user, overwrite=True) workspace = exposure_layer.workspace layer_name = exposure_layer.name msg = 'Expected layer name to be "%s". Got %s' % (name, layer_name) assert layer_name == name.lower(), msg exposure_name = '%s:%s' % (workspace, layer_name) # Check metadata assert_bounding_box_matches(exposure_layer, exposure_filename) exp_bbox_string = get_bounding_box_string(exposure_filename) check_layer(exposure_layer, full=True) # Now we know that exposure layer is good, lets upload some # hazard layers and do the calculations filename = 'lembang_mmi_hazmap.asc' # Save hazard_filename = '%s/%s' % (TESTDATA, filename) hazard_layer = save_to_geonode(hazard_filename, user=self.user, overwrite=True) hazard_name = '%s:%s' % (hazard_layer.workspace, hazard_layer.name) # Check metadata assert_bounding_box_matches(hazard_layer, hazard_filename) haz_bbox_string = get_bounding_box_string(hazard_filename) check_layer(hazard_layer, full=True) calculate_url = reverse('safe-calculate') # Run calculation c = Client() rv = c.post( calculate_url, data=dict( hazard_server=INTERNAL_SERVER_URL, hazard=hazard_name, exposure_server=INTERNAL_SERVER_URL, exposure=exposure_name, #bbox=viewport_bbox_string, bbox=exp_bbox_string, # This one reproduced the # crash for lembang impact_function='I T B Fatality Function', keywords='test,shakemap,usgs')) self.assertEqual(rv.status_code, 200) self.assertEqual(rv['Content-Type'], 'application/json') data = json.loads(rv.content) if 'errors' in data: errors = data['errors'] if errors is not None: msg = ('The server returned the error message: %s' % str(errors)) raise Exception(msg) assert 'success' in data assert 'hazard_layer' in data assert 'exposure_layer' in data assert 'run_duration' in data assert 'run_date' in data assert 'layer' in data assert data['success'] # Download result and check layer = data['layer'] layer_id = layer['id'] result_layer = download(INTERNAL_SERVER_URL, layer_id, get_bounding_box_string(hazard_filename)) assert os.path.exists(result_layer.filename)