def value(self, z, embedding=0): if self.prec == 0: return 0 else: q = exp(2 * CC.pi() * CC(0, 1) * z) return sum( self.coefficient_embedding(n, embedding) * q**n for n in range(self.prec))
def check_ap2_slow(rec): # Check a_{p^2} = a_p^2 - chi(p) for primes up to 31 ls = rec['lfunction_label'].split('.') level, weight, chi = map(int, [ls[0], ls[1], ls[-2]]) char = DirichletGroup_conrey(level, CC)[chi] Z = rec['an_normalized[0:1000]'] for p in prime_range(31+1): if level % p != 0: # a_{p^2} = a_p^2 - chi(p) charval = CC(2*char.logvalue(int(p)) * CC.pi()*CC.gens()[0]).exp() else: charval = 0 if (CC(*Z[p**2 - 1]) - (CC(*Z[p-1])**2 - charval)).abs() > 1e-11: return False return True
def check_ap2_slow(self, rec, verbose=False): """ Check a_{p^2} = a_p^2 - chi(p) for primes up to 31 """ ls = rec['label'].split('.') level, weight, chi = map(int, [ls[0], ls[1], ls[-2]]) char = DirichletGroup_conrey(level, CC)[chi] Z = rec['an_normalized'] for p in prime_range(31+1): if level % p != 0: # a_{p^2} = a_p^2 - chi(p) charval = CC(2*char.logvalue(int(p)) * CC.pi()*CC.gens()[0]).exp() else: charval = 0 if (CC(*Z[p**2 - 1]) - (CC(*Z[p-1])**2 - charval)).abs() > 1e-13: if verbose: print "ap2 failure", p, CC(*Z[p**2 - 1]), CC(*Z[p-1])**2 - charval return False return True
def value(self, z, embedding=0): if self.prec == 0: return 0 else: q = exp(2*CC.pi()*CC(0,1)*z) return sum(self.coefficient_embedding(n,embedding)*q**n for n in range(self.prec))
def gaussum(n, N, prec=53): CC = ComplexField(prec) return sum(CC(exp(2 * CC.pi() * CC(0, 1) * n * m ** 2 / N)) for m in range(N))
def gaussum(n, N, prec=53): CC = ComplexField(prec) return sum( CC(exp(2 * CC.pi() * CC(0, 1) * n * m**2 / N)) for m in range(N))