示例#1
0
def _fraction_field(ring):
    r"""
    Return a fraction field of ``ring``.

    EXAMPLES:

    This works around some annoyances with ``ring.fraction_field()``::

        sage: R.<x> = ZZ[]
        sage: S = R.quo(x^2 + 1)
        sage: S.fraction_field()
        Fraction Field of Univariate Quotient Polynomial Ring in xbar over Integer Ring with modulus x^2 + 1

        sage: from mac_lane.padic_valuation import _fraction_field
        sage: _fraction_field(S)
        Univariate Quotient Polynomial Ring in xbar over Rational Field with modulus x^2 + 1

    """
    from sage.categories.all import Fields
    if ring in Fields():
        return ring

    from sage.rings.polynomial.polynomial_quotient_ring import is_PolynomialQuotientRing
    if is_PolynomialQuotientRing(ring):
        from sage.categories.all import IntegralDomains
        if ring in IntegralDomains():
            return ring.base().change_ring(ring.base_ring().fraction_field()).quo(ring.modulus())
    return ring.fraction_field()
示例#2
0
    def extensions(self, ring):
        r"""
        Return the extensions of this valuation to ``ring``.

        EXAMPLES::

            sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
            sage: v = pAdicValuation(ZZ, 2)
            sage: v.extensions(GaussianIntegers())
            [2-adic valuation]

        TESTS::

            sage: R.<a> = QQ[]
            sage: L.<a> = QQ.extension(x^3 - 2)
            sage: R.<b> = L[]
            sage: M.<b> = L.extension(b^2 + 2*b + a)
            sage: pAdicValuation(M, 2)
            2-adic valuation

        Check that we can extend to a field written as a quotient::

            sage: R.<x> = QQ[]
            sage: K.<a> = QQ.extension(x^2 + 1)
            sage: R.<y> = K[]
            sage: L.<b> = R.quo(x^2 + a)
            sage: pAdicValuation(QQ, 2).extensions(L)
            [2-adic valuation]

        """
        if self.domain() is ring:
            return [self]
        domain_fraction_field = _fraction_field(self.domain())
        if domain_fraction_field is not self.domain():
            if domain_fraction_field.is_subring(ring):
                return pAdicValuation(domain_fraction_field, self).extensions(ring)
        if self.domain().is_subring(ring):
            from sage.rings.polynomial.polynomial_quotient_ring import is_PolynomialQuotientRing
            if is_PolynomialQuotientRing(ring):
                if is_PolynomialQuotientRing(self.domain()):
                    if self.domain().modulus() == ring.modulus():
                        base_extensions = self._base_valuation.extensions(self._base_valuation.domain().change_ring(self._base_valuation.domain().base_ring().fraction_field()))
                        return [pAdicValuation(ring, base._initial_approximation) for base in base_extensions]
                if ring.base_ring() is self.domain():
                    from sage.categories.all import IntegralDomains
                    if ring in IntegralDomains():
                        return self._extensions_to_quotient(ring)
                else:
                    return sum([w.extensions(ring) for w in self.extensions(ring.base_ring())], [])
            from sage.rings.number_field.number_field import is_NumberField
            if is_NumberField(ring.fraction_field()):
                if ring.base_ring().fraction_field() is self.domain().fraction_field():
                    from valuation_space import DiscretePseudoValuationSpace
                    parent = DiscretePseudoValuationSpace(ring)
                    approximants = self.mac_lane_approximants(ring.fraction_field().relative_polynomial().change_ring(self.domain()), assume_squarefree=True)
                    return [pAdicValuation(ring, approximant, approximants) for approximant in approximants]
                if ring.base_ring() is not ring and self.domain().is_subring(ring.base_ring()):
                    return sum([w.extensions(ring) for w in self.extensions(ring.base_ring())], [])
        return super(pAdicValuation_base, self).extensions(ring)
示例#3
0
    def create_object(self, version, key):
        ring, polynomial, names = key

        R = ring.base_ring()
        from sage.categories.all import IntegralDomains
        if R in IntegralDomains():
            try:
                is_irreducible = polynomial.is_irreducible()
            except NotImplementedError: # is_irreducible sometimes not implemented
                pass
            else:
                if is_irreducible:
                    from sage.categories.all import Fields
                    if R in Fields():
                        from sage.rings.polynomial.polynomial_quotient_ring import PolynomialQuotientRing_field
                        return PolynomialQuotientRing_field(ring, polynomial, names)
                    else:
                        from sage.rings.polynomial.polynomial_quotient_ring import PolynomialQuotientRing_domain
                        return PolynomialQuotientRing_domain(ring, polynomial, names)
        from sage.rings.polynomial.polynomial_quotient_ring import PolynomialQuotientRing_generic
        return PolynomialQuotientRing_generic(ring, polynomial, names)
示例#4
0
文件: __init__.py 项目: MCLF/mac_lane
    def is_injective(self):
        r"""
        TESTS::

            sage: sys.path.append(os.getcwd()); from mac_lane import * # optional: standalone
            sage: QQ.coerce_map_from(ZZ).is_injective() # indirect doctest
            True

            sage: Hom(ZZ,QQ['x']).natural_map().is_injective()
            True

            sage: R.<x> = ZZ[]
            sage: R.<xbar> = R.quo(x^2+x+1)
            sage: Hom(ZZ,R).natural_map().is_injective()
            True

            sage: R.<x> = QQbar[]
            sage: R.coerce_map_from(QQbar).is_injective()
            True

        """
        from sage.categories.all import Fields, IntegralDomains
        from sage.rings.number_field.order import AbsoluteOrder
        from sage.rings.polynomial.polynomial_ring import is_PolynomialRing
        # this should be implemented as far down as possible
        if self.domain() in Fields(): return True
        if self.domain() == sage.all.ZZ and self.codomain().characteristic() == 0: return True
        if isinstance(self.domain(), AbsoluteOrder) and self(self.domain().gen()) != 0 and self.codomain() in IntegralDomains(): return True
        # this should be implemented somewhere else
        if is_PolynomialRing(self.codomain()) and self.codomain().base_ring() is self.domain():
            return True
        coercion = self.codomain().coerce_map_from(self.domain())
        if coercion is not None:
            try:
                return coercion.is_injective()
            except NotImplementedError:
                # PolynomialBaseringInjection does not implement is_surjective/is_injective
                if isinstance(coercion, sage.categories.map.FormalCompositeMap):
                    if all([f.is_injective() for f in list(coercion)]):
                        return True
            except AttributeError: # DefaultConvertMap_unique does not implement is_injective/surjective at all
                pass

        raise NotImplementedError
示例#5
0
    def extensions(self, ring):
        r"""
        Return the extensions of this valuation to ``ring``.

        EXAMPLES::

            sage: v = ZZ.valuation(2)
            sage: v.extensions(GaussianIntegers())
            [2-adic valuation]

        TESTS::

            sage: R.<a> = QQ[]
            sage: L.<a> = QQ.extension(x^3 - 2)
            sage: R.<b> = L[]
            sage: M.<b> = L.extension(b^2 + 2*b + a)
            sage: M.valuation(2)
            2-adic valuation

        Check that we can extend to a field written as a quotient::

            sage: R.<x> = QQ[]
            sage: K.<a> = QQ.extension(x^2 + 1)
            sage: R.<y> = K[]
            sage: L.<b> = R.quo(x^2 + a)
            sage: QQ.valuation(2).extensions(L)
            [2-adic valuation]

        A case where there was at some point an internal error in the
        approximants code::

            sage: R.<x> = QQ[]
            sage: L.<a> = NumberField(x^4 + 2*x^3 + 2*x^2 + 8)
            sage: QQ.valuation(2).extensions(L)
            [[ 2-adic valuation, v(x + 2) = 3/2 ]-adic valuation,
             [ 2-adic valuation, v(x) = 1/2 ]-adic valuation]

        A case where the extension was incorrect at some point::

            sage: v = QQ.valuation(2)
            sage: L.<a> = NumberField(x^2 + 2)
            sage: M.<b> = L.extension(x^2 + 1)
            sage: w = v.extension(L).extension(M)
            sage: w(w.uniformizer())
            1/4

        A case where the extensions could not be separated at some point::

            sage: v = QQ.valuation(2)
            sage: R.<x> = QQ[]
            sage: F = x^48 + 120*x^45 + 56*x^42 + 108*x^36 + 32*x^33 + 40*x^30 + 48*x^27 + 80*x^24 + 112*x^21 + 96*x^18 + 96*x^15 + 24*x^12 + 96*x^9 + 16*x^6 + 96*x^3 + 68
            sage: L.<a> = QQ.extension(F)
            sage: v.extensions(L)
            [[ 2-adic valuation, v(x) = 1/24, v(x^24 + 4*x^18 + 10*x^12 + 12*x^6 + 8*x^3 + 6) = 29/8 ]-adic valuation,
             [ 2-adic valuation, v(x) = 1/24, v(x^24 + 4*x^18 + 2*x^12 + 12*x^6 + 8*x^3 + 6) = 29/8 ]-adic valuation]

        """
        if self.domain() is ring:
            return [self]
        domain_fraction_field = _fraction_field(self.domain())
        if domain_fraction_field is not self.domain():
            if domain_fraction_field.is_subring(ring):
                return pAdicValuation(domain_fraction_field,
                                      self).extensions(ring)
        if self.domain().is_subring(ring):
            from sage.rings.polynomial.polynomial_quotient_ring import is_PolynomialQuotientRing
            if is_PolynomialQuotientRing(ring):
                if is_PolynomialQuotientRing(self.domain()):
                    if self.domain().modulus() == ring.modulus():
                        base_extensions = self._base_valuation.extensions(
                            self._base_valuation.domain().change_ring(
                                self._base_valuation.domain().base_ring(
                                ).fraction_field()))
                        return [
                            pAdicValuation(ring, base._initial_approximation)
                            for base in base_extensions
                        ]
                if ring.base_ring() is self.domain():
                    from sage.categories.all import IntegralDomains
                    if ring in IntegralDomains():
                        return self._extensions_to_quotient(ring)
                elif self.domain().is_subring(ring.base_ring()):
                    return sum([
                        w.extensions(ring)
                        for w in self.extensions(ring.base_ring())
                    ], [])
            from sage.rings.number_field.number_field import is_NumberField
            if is_NumberField(ring.fraction_field()):
                if ring.base_ring().fraction_field() is self.domain(
                ).fraction_field():
                    from sage.rings.valuation.valuation_space import DiscretePseudoValuationSpace
                    parent = DiscretePseudoValuationSpace(ring)
                    approximants = self.mac_lane_approximants(
                        ring.fraction_field().relative_polynomial(
                        ).change_ring(self.domain()),
                        assume_squarefree=True,
                        require_incomparability=True)
                    return [
                        pAdicValuation(ring, approximant, approximants)
                        for approximant in approximants
                    ]
                if ring.base_ring() is not ring and self.domain().is_subring(
                        ring.base_ring()):
                    return sum([
                        w.extensions(ring)
                        for w in self.extensions(ring.base_ring())
                    ], [])
        return super(pAdicValuation_base, self).extensions(ring)