def __init__(self, G, names): """ Initialize ``self``. TESTS:: sage: G = RightAngledArtinGroup(graphs.CycleGraph(5)) sage: TestSuite(G).run() """ self._graph = G F = FreeGroup(names=names) CG = Graph(G).complement() # Make sure it's mutable CG.relabel() # Standardize the labels cm = [[-1] * CG.num_verts() for _ in range(CG.num_verts())] for i in range(CG.num_verts()): cm[i][i] = 1 for u, v in CG.edge_iterator(labels=False): cm[u][v] = 2 cm[v][u] = 2 self._coxeter_group = CoxeterGroup( CoxeterMatrix(cm, index_set=G.vertices())) rels = tuple( F([i + 1, j + 1, -i - 1, -j - 1]) for i, j in CG.edge_iterator(labels=False)) # +/- 1 for indexing FinitelyPresentedGroup.__init__(self, F, rels)
def __classcall_private__(cls, data, base_ring=None, index_set=None): """ Normalize arguments to ensure a unique representation. EXAMPLES:: sage: W1 = CoxeterGroup(['A',2], implementation="reflection", base_ring=UniversalCyclotomicField()) sage: W2 = CoxeterGroup([[1,3],[3,1]], index_set=(1,2)) sage: W1 is W2 True sage: G1 = Graph([(1,2)]) sage: W3 = CoxeterGroup(G1) sage: W1 is W3 True sage: G2 = Graph([(1,2,3)]) sage: W4 = CoxeterGroup(G2) sage: W1 is W4 True """ data = CoxeterMatrix(data, index_set=index_set) if base_ring is None: base_ring = UniversalCyclotomicField() return super(CoxeterMatrixGroup, cls).__classcall__(cls, data, base_ring, data.index_set())
def coxeter_matrix(self): """ Return the Coxeter matrix of ``self``. EXAMPLES:: sage: FiniteCoxeterGroups().example(6).coxeter_matrix() [1 6] [6 1] """ return CoxeterMatrix([[1, self.n], [self.n, 1]])
def __classcall_private__(cls, coxeter_data, names=None): """ Normalize input to ensure a unique representation. TESTS:: sage: A1 = ArtinGroup(['B',3]) sage: A2 = ArtinGroup(['B',3], 's') sage: A3 = ArtinGroup(['B',3], ['s1','s2','s3']) sage: A1 is A2 and A2 is A3 True sage: A1 = ArtinGroup(['B',2], 'a,b') sage: A2 = ArtinGroup([[1,4],[4,1]], 'a,b') sage: A3.<a,b> = ArtinGroup('B2') sage: A1 is A2 and A2 is A3 True sage: ArtinGroup(['A',3]) is BraidGroup(4, 's1,s2,s3') True sage: G = graphs.PathGraph(3) sage: CM = CoxeterMatrix([[1,-1,2],[-1,1,-1],[2,-1,1]], index_set=G.vertices()) sage: A = groups.misc.Artin(CM) sage: Ap = groups.misc.RightAngledArtin(G, 's') sage: A is Ap True """ coxeter_data = CoxeterMatrix(coxeter_data) if names is None: names = 's' if isinstance(names, six.string_types): if ',' in names: names = [x.strip() for x in names.split(',')] else: names = [names + str(i) for i in coxeter_data.index_set()] names = tuple(names) if len(names) != coxeter_data.rank(): raise ValueError("the number of generators must match" " the rank of the Coxeter type") if all(m == Infinity for m in coxeter_data.coxeter_graph().edge_labels()): from sage.groups.raag import RightAngledArtinGroup return RightAngledArtinGroup(coxeter_data.coxeter_graph(), names) if not coxeter_data.is_finite(): raise NotImplementedError if coxeter_data.coxeter_type().cartan_type().type() == 'A': from sage.groups.braid import BraidGroup return BraidGroup(coxeter_data.rank() + 1, names) return FiniteTypeArtinGroup(coxeter_data, names)
def coxeter_matrix(self): """ Return the Coxeter matrix for this Coxeter group. The columns and rows are ordered according to the result of :meth:`index_set`. EXAMPLES:: sage: W = CoxeterGroup(['A', 3], implementation='coxeter3') # optional - coxeter3 sage: m = W.coxeter_matrix(); m # optional - coxeter3 [1 3 2] [3 1 3] [2 3 1] sage: m.index_set() == W.index_set() # optional - coxeter3 True """ return CoxeterMatrix(self._coxgroup.coxeter_matrix(), self.index_set())
def __classcall_private__(cls, data, base_ring=None, index_set=None): """ Normalize arguments to ensure a unique representation. EXAMPLES:: sage: W1 = CoxeterGroup(['A',2], implementation="reflection", base_ring=ZZ) sage: W2 = CoxeterGroup([[1,3],[3,1]], index_set=(1,2)) sage: W1 is W2 True sage: G1 = Graph([(1,2)]) sage: W3 = CoxeterGroup(G1) sage: W1 is W3 True sage: G2 = Graph([(1,2,3)]) sage: W4 = CoxeterGroup(G2) sage: W1 is W4 True """ data = CoxeterMatrix(data, index_set=index_set) if base_ring is None: if data.is_simply_laced(): base_ring = ZZ elif data.is_finite(): letter = data.coxeter_type().cartan_type().type() if letter in ['B', 'C', 'F']: base_ring = QuadraticField(2) elif letter == 'G': base_ring = QuadraticField(3) elif letter == 'H': base_ring = QuadraticField(5) else: base_ring = UniversalCyclotomicField() else: base_ring = UniversalCyclotomicField() return super(CoxeterMatrixGroup, cls).__classcall__(cls, data, base_ring, data.index_set())