示例#1
0
            def to_symmetric_function(self):
                r"""
                Takes a quasi-symmetric function, expressed in the monomial basis, and
                returns its symmetric realization, when possible, expressed in the
                monomial basis of symmetric functions.

                OUTPUT:

                - If ``self`` is a symmetric function, then the expansion
                  in the monomial basis of the symmetric functions is returned.
                  Otherwise an error is raised.

                EXAMPLES::

                    sage: QSym = QuasiSymmetricFunctions(QQ)
                    sage: M = QSym.Monomial()
                    sage: (M[3,2] + M[2,3] + M[4,1]).to_symmetric_function()
                    Traceback (most recent call last):
                    ...
                    ValueError: M[2, 3] + M[3, 2] + M[4, 1] is not a symmetric function
                    sage: (M[3,2] + M[2,3] + 2*M[4,1] + 2*M[1,4]).to_symmetric_function()
                    m[3, 2] + 2*m[4, 1]
                    sage: m = SymmetricFunctions(QQ).m()
                    sage: M(m[3,1,1]).to_symmetric_function()
                    m[3, 1, 1]
                    sage: (M(m[2,1])*M(m[2,1])).to_symmetric_function()-m[2,1]*m[2,1]
                    0

                TESTS::

                    sage: (M(0)).to_symmetric_function()
                    0
                    sage: (M([])).to_symmetric_function()
                    m[]
                    sage: (2*M([])).to_symmetric_function()
                    2*m[]

                """
                m = SymmetricFunctions(self.parent().base_ring()).monomial()
                if self.is_symmetric():
                    return m.sum_of_terms(
                        [(I, coeff)
                         for (I, coeff) in self if list(I) in Partitions()],
                        distinct=True)
                else:
                    raise ValueError, "%s is not a symmetric function" % self
示例#2
0
文件: qsym.py 项目: sageb0t/testsage
            def to_symmetric_function( self ):
                r"""
                Takes a quasi-symmetric function, expressed in the monomial basis, and
                returns its symmetric realization, when possible, expressed in the
                monomial basis of symmetric functions.

                OUTPUT:

                - If ``self`` is a symmetric function, then the expansion
                  in the monomial basis of the symmetric functions is returned.
                  Otherwise an error is raised.

                EXAMPLES::

                    sage: QSym = QuasiSymmetricFunctions(QQ)
                    sage: M = QSym.Monomial()
                    sage: (M[3,2] + M[2,3] + M[4,1]).to_symmetric_function()
                    Traceback (most recent call last):
                    ...
                    ValueError: M[2, 3] + M[3, 2] + M[4, 1] is not a symmetric function
                    sage: (M[3,2] + M[2,3] + 2*M[4,1] + 2*M[1,4]).to_symmetric_function()
                    m[3, 2] + 2*m[4, 1]
                    sage: m = SymmetricFunctions(QQ).m()
                    sage: M(m[3,1,1]).to_symmetric_function()
                    m[3, 1, 1]
                    sage: (M(m[2,1])*M(m[2,1])).to_symmetric_function()-m[2,1]*m[2,1]
                    0

                TESTS::

                    sage: (M(0)).to_symmetric_function()
                    0
                    sage: (M([])).to_symmetric_function()
                    m[]
                    sage: (2*M([])).to_symmetric_function()
                    2*m[]

                """
                m = SymmetricFunctions(self.parent().base_ring()).monomial()
                if self.is_symmetric():
                    return m.sum_of_terms([(I, coeff) for (I, coeff) in self
                        if list(I) in Partitions()], distinct=True)
                else:
                    raise ValueError, "%s is not a symmetric function"%self
示例#3
0
文件: fsym.py 项目: BrentBaccala/sage
            def to_symmetric_function(self):
                r"""
                Return the image of ``self`` under the natural projection
                map to `Sym`.

                The natural projection map `FSym \to Sym` sends each
                standard tableau `t` to the Schur function `s_\lambda`,
                where `\lambda` is the shape of `t`.
                This map is a surjective Hopf algebra homomorphism.

                EXAMPLES::

                    sage: FSym = algebras.FSym(QQ)
                    sage: G = FSym.G()
                    sage: t = StandardTableau([[1,3],[2,4],[5]])
                    sage: G[t].to_symmetric_function()
                    s[2, 2, 1]
                """
                s = SymmetricFunctions(self.parent().base_ring()).s()
                return s.sum_of_terms((t.shape(), coeff) for t, coeff in self)
示例#4
0
文件: fsym.py 项目: sagemath/sage
            def to_symmetric_function(self):
                r"""
                Return the image of ``self`` under the natural projection
                map to `Sym`.

                The natural projection map `FSym \to Sym` sends each
                standard tableau `t` to the Schur function `s_\lambda`,
                where `\lambda` is the shape of `t`.
                This map is a surjective Hopf algebra homomorphism.

                EXAMPLES::

                    sage: FSym = algebras.FSym(QQ)
                    sage: G = FSym.G()
                    sage: t = StandardTableau([[1,3],[2,4],[5]])
                    sage: G[t].to_symmetric_function()
                    s[2, 2, 1]
                """
                s = SymmetricFunctions(self.parent().base_ring()).s()
                return s.sum_of_terms((t.shape(), coeff) for t, coeff in self)
示例#5
0
            def to_symmetric_function(self):
                r"""
                Take a function in the `\mathbf{w}` basis, and return its
                symmetric realization, when possible, expressed in the
                homogeneous basis of symmetric functions.

                OUTPUT:

                - If ``self`` is a symmetric function, then the expansion
                  in the homogeneous basis of the symmetric functions is returned.
                  Otherwise an error is raised.

                EXAMPLES::

                    sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
                    sage: elt = w[[1],[2,3]] + w[[1,2],[3]] + w[[1,3],[2]]
                    sage: elt.to_symmetric_function()
                    h[2, 1]
                    sage: elt = w.sum_of_partitions([2,1,1]) / 2
                    sage: elt.to_symmetric_function()
                    1/2*h[2, 1, 1]

                TESTS::

                    sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
                    sage: w(0).to_symmetric_function()
                    0
                    sage: w([]).to_symmetric_function()
                    h[]
                    sage: (2*w([])).to_symmetric_function()
                    2*h[]
                """
                if not self.is_symmetric():
                    raise ValueError("not a symmetric function")
                h = SymmetricFunctions(self.parent().base_ring()).homogeneous()
                d = {A.shape(): c for A, c in self}
                return h.sum_of_terms(
                    [(AA, cc / prod(map(factorial, AA.to_exp())))
                     for AA, cc in d.items()],
                    distinct=True)
示例#6
0
文件: dual.py 项目: JasYoung314/sage
            def to_symmetric_function(self):
                r"""
                Take a function in the `\mathbf{w}` basis, and return its
                symmetric realization, when possible, expressed in the
                homogeneous basis of symmetric functions.

                OUTPUT:

                - If ``self`` is a symmetric function, then the expansion
                  in the homogeneous basis of the symmetric functions is returned.
                  Otherwise an error is raised.

                EXAMPLES::

                    sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
                    sage: elt = w[[1],[2,3]] + w[[1,2],[3]] + w[[1,3],[2]]
                    sage: elt.to_symmetric_function()
                    h[2, 1]
                    sage: elt = w.sum_of_partitions([2,1,1]) / 2
                    sage: elt.to_symmetric_function()
                    1/2*h[2, 1, 1]

                TESTS::

                    sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
                    sage: w(0).to_symmetric_function()
                    0
                    sage: w([]).to_symmetric_function()
                    h[]
                    sage: (2*w([])).to_symmetric_function()
                    2*h[]
                """
                if not self.is_symmetric():
                    raise ValueError("not a symmetric function")
                h = SymmetricFunctions(self.parent().base_ring()).homogeneous()
                d = {A.shape(): c for A, c in self}
                return h.sum_of_terms(
                    [(AA, cc / prod(map(factorial, AA.to_exp()))) for AA, cc in d.items()], distinct=True
                )
        def cycle_index(self, parent=None):
            r"""
            Return the *cycle index* of ``self``.

            INPUT:

             - ``self`` - a permutation group `G`
             - ``parent`` -- a free module with basis indexed by partitions,
               or behave as such, with a ``term`` and ``sum`` method
               (default: the symmetric functions over the rational field in the `p` basis)

            The *cycle index* of a permutation group `G`
            (:wikipedia:`Cycle_index`) is a gadget counting the
            elements of `G` by cycle type, averaged over the group:

            .. MATH::

                P = \frac{1}{|G|} \sum_{g\in G} p_{ \operatorname{cycle\ type}(g) }

            EXAMPLES:

            Among the permutations of the symmetric group `S_4`, there is
            the identity, 6 cycles of length 2, 3 products of two cycles
            of length 2, 8 cycles of length 3, and 6 cycles of length 4::

                sage: S4 = SymmetricGroup(4)
                sage: P = S4.cycle_index()
                sage: 24 * P
                p[1, 1, 1, 1] + 6*p[2, 1, 1] + 3*p[2, 2] + 8*p[3, 1] + 6*p[4]

            If `l = (l_1,\dots,l_k)` is a partition, ``|G| P[l]`` is the number
            of elements of `G` with cycles of length `(p_1,\dots,p_k)`::

                sage: 24 * P[ Partition([3,1]) ]
                8

            The cycle index plays an important role in the enumeration of
            objects modulo the action of a group (Pólya enumeration), via
            the use of symmetric functions and plethysms. It is therefore
            encoded as a symmetric function, expressed in the powersum
            basis::

                sage: P.parent()
                Symmetric Functions over Rational Field in the powersum basis

            This symmetric function can have some nice properties; for
            example, for the symmetric group `S_n`, we get the complete
            symmetric function `h_n`::

                sage: S = SymmetricFunctions(QQ); h = S.h()
                sage: h( P )
                h[4]

            .. TODO::

                Add some simple examples of Pólya enumeration, once
                it will be easy to expand symmetric functions on any
                alphabet.

            Here are the cycle indices of some permutation groups::

                sage: 6 * CyclicPermutationGroup(6).cycle_index()
                p[1, 1, 1, 1, 1, 1] + p[2, 2, 2] + 2*p[3, 3] + 2*p[6]

                sage: 60 * AlternatingGroup(5).cycle_index()
                p[1, 1, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 24*p[5]

                sage: for G in TransitiveGroups(5):               # long time
                ....:     G.cardinality() * G.cycle_index()
                p[1, 1, 1, 1, 1] + 4*p[5]
                p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 4*p[5]
                p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 10*p[4, 1] + 4*p[5]
                p[1, 1, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 24*p[5]
                p[1, 1, 1, 1, 1] + 10*p[2, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 20*p[3, 2] + 30*p[4, 1] + 24*p[5]

            Permutation groups with arbitrary domains are supported
            (see :trac:`22765`)::

                sage: G = PermutationGroup([['b','c','a']], domain=['a','b','c'])
                sage: G.cycle_index()
                1/3*p[1, 1, 1] + 2/3*p[3]

            One may specify another parent for the result::

                sage: F = CombinatorialFreeModule(QQ, Partitions())
                sage: P = CyclicPermutationGroup(6).cycle_index(parent = F)
                sage: 6 * P
                B[[1, 1, 1, 1, 1, 1]] + B[[2, 2, 2]] + 2*B[[3, 3]] + 2*B[[6]]
                sage: P.parent() is F
                True

            This parent should be a module with basis indexed by partitions::

                sage: CyclicPermutationGroup(6).cycle_index(parent = QQ)
                Traceback (most recent call last):
                  ...
                ValueError: `parent` should be a module with basis indexed by partitions

            REFERENCES:

            - [Ke1991]_

            AUTHORS:

            - Nicolas Borie and Nicolas M. Thiéry

            TESTS::

                sage: P = PermutationGroup([]); P
                Permutation Group with generators [()]
                sage: P.cycle_index()
                p[1]
                sage: P = PermutationGroup([[(1)]]); P
                Permutation Group with generators [()]
                sage: P.cycle_index()
                p[1]
            """
            from sage.categories.modules import Modules
            if parent is None:
                from sage.rings.rational_field import QQ
                from sage.combinat.sf.sf import SymmetricFunctions
                parent = SymmetricFunctions(QQ).powersum()
            elif not parent in Modules.WithBasis:
                raise ValueError(
                    "`parent` should be a module with basis indexed by partitions"
                )
            base_ring = parent.base_ring()
            return parent.sum_of_terms(
                [C.an_element().cycle_type(),
                 base_ring(C.cardinality())]
                for C in self.conjugacy_classes()) / self.cardinality()
        def cycle_index(self, parent = None):
            r"""
            Return the *cycle index* of ``self``.

            INPUT:

             - ``self`` - a permutation group `G`
             - ``parent`` -- a free module with basis indexed by partitions,
               or behave as such, with a ``term`` and ``sum`` method
               (default: the symmetric functions over the rational field in the `p` basis)

            The *cycle index* of a permutation group `G`
            (:wikipedia:`Cycle_index`) is a gadget counting the
            elements of `G` by cycle type, averaged over the group:

            .. MATH::

                P = \frac{1}{|G|} \sum_{g\in G} p_{ \operatorname{cycle\ type}(g) }

            EXAMPLES:

            Among the permutations of the symmetric group `S_4`, there is
            the identity, 6 cycles of length 2, 3 products of two cycles
            of length 2, 8 cycles of length 3, and 6 cycles of length 4::

                sage: S4 = SymmetricGroup(4)
                sage: P = S4.cycle_index()
                sage: 24 * P
                p[1, 1, 1, 1] + 6*p[2, 1, 1] + 3*p[2, 2] + 8*p[3, 1] + 6*p[4]

            If `l = (l_1,\dots,l_k)` is a partition, ``|G| P[l]`` is the number
            of elements of `G` with cycles of length `(p_1,\dots,p_k)`::

                sage: 24 * P[ Partition([3,1]) ]
                8

            The cycle index plays an important role in the enumeration of
            objects modulo the action of a group (Pólya enumeration), via
            the use of symmetric functions and plethysms. It is therefore
            encoded as a symmetric function, expressed in the powersum
            basis::

                sage: P.parent()
                Symmetric Functions over Rational Field in the powersum basis

            This symmetric function can have some nice properties; for
            example, for the symmetric group `S_n`, we get the complete
            symmetric function `h_n`::

                sage: S = SymmetricFunctions(QQ); h = S.h()
                sage: h( P )
                h[4]

            .. TODO::

                Add some simple examples of Pólya enumeration, once
                it will be easy to expand symmetric functions on any
                alphabet.

            Here are the cycle indices of some permutation groups::

                sage: 6 * CyclicPermutationGroup(6).cycle_index()
                p[1, 1, 1, 1, 1, 1] + p[2, 2, 2] + 2*p[3, 3] + 2*p[6]

                sage: 60 * AlternatingGroup(5).cycle_index()
                p[1, 1, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 24*p[5]

                sage: for G in TransitiveGroups(5):               # optional - database_gap # long time
                ....:     G.cardinality() * G.cycle_index()
                p[1, 1, 1, 1, 1] + 4*p[5]
                p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 4*p[5]
                p[1, 1, 1, 1, 1] + 5*p[2, 2, 1] + 10*p[4, 1] + 4*p[5]
                p[1, 1, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 24*p[5]
                p[1, 1, 1, 1, 1] + 10*p[2, 1, 1, 1] + 15*p[2, 2, 1] + 20*p[3, 1, 1] + 20*p[3, 2] + 30*p[4, 1] + 24*p[5]

            Permutation groups with arbitrary domains are supported
            (see :trac:`22765`)::

                sage: G = PermutationGroup([['b','c','a']], domain=['a','b','c'])
                sage: G.cycle_index()
                1/3*p[1, 1, 1] + 2/3*p[3]

            One may specify another parent for the result::

                sage: F = CombinatorialFreeModule(QQ, Partitions())
                sage: P = CyclicPermutationGroup(6).cycle_index(parent = F)
                sage: 6 * P
                B[[1, 1, 1, 1, 1, 1]] + B[[2, 2, 2]] + 2*B[[3, 3]] + 2*B[[6]]
                sage: P.parent() is F
                True

            This parent should be a module with basis indexed by partitions::

                sage: CyclicPermutationGroup(6).cycle_index(parent = QQ)
                Traceback (most recent call last):
                  ...
                ValueError: `parent` should be a module with basis indexed by partitions

            REFERENCES:

            - [Ke1991]_

            AUTHORS:

            - Nicolas Borie and Nicolas M. Thiéry

            TESTS::

                sage: P = PermutationGroup([]); P
                Permutation Group with generators [()]
                sage: P.cycle_index()
                p[1]
                sage: P = PermutationGroup([[(1)]]); P
                Permutation Group with generators [()]
                sage: P.cycle_index()
                p[1]
            """
            from sage.categories.modules import Modules
            if parent is None:
                 from sage.rings.rational_field import QQ
                 from sage.combinat.sf.sf import SymmetricFunctions
                 parent = SymmetricFunctions(QQ).powersum()
            elif not parent in Modules.WithBasis:
                raise ValueError("`parent` should be a module with basis indexed by partitions")
            base_ring = parent.base_ring()
            return parent.sum_of_terms([C.an_element().cycle_type(), base_ring(C.cardinality())]
                                       for C in self.conjugacy_classes()
                                      ) / self.cardinality()