示例#1
0
    def uncompactify(self):
        r"""
        Returns the tree obtained from self by splitting edges so that they
        are labelled by exactly one letter. The resulting tree is
        isomorphic to the suffix trie.

        EXAMPLES::

            sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree, SuffixTrie
            sage: abbab = Words("ab")("abbab")
            sage: s = SuffixTrie(abbab)
            sage: t = ImplicitSuffixTree(abbab)
            sage: t.uncompactify().is_isomorphic(s.to_digraph())
            True
        """
        tree = self.to_digraph(word_labels=True)
        newtree = DiGraph()
        newtree.add_vertices(range(tree.order()))
        new_node = tree.order() + 1
        for (u, v, label) in tree.edge_iterator():
            if len(label) == 1:
                newtree.add_edge(u, v)
            else:
                newtree.add_edge(u, new_node, label[0])
                for w in label[1:-1]:
                    newtree.add_edge(new_node, new_node + 1, w)
                    new_node += 1
                newtree.add_edge(new_node, v, label[-1])
                new_node += 1
        return newtree
示例#2
0
    def uncompactify(self):
        r"""
        Returns the tree obtained from self by splitting edges so that they
        are labelled by exactly one letter. The resulting tree is
        isomorphic to the suffix trie.

        EXAMPLES::

            sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree, SuffixTrie
            sage: abbab = Words("ab")("abbab")
            sage: s = SuffixTrie(abbab)
            sage: t = ImplicitSuffixTree(abbab)
            sage: t.uncompactify().is_isomorphic(s.to_digraph())
            True
        """
        tree = self.to_digraph(word_labels=True)
        newtree = DiGraph()
        newtree.add_vertices(range(tree.order()))
        new_node = tree.order() + 1
        for (u,v,label) in tree.edge_iterator():
            if len(label) == 1:
                newtree.add_edge(u,v)
            else:
                newtree.add_edge(u,new_node,label[0]);
                for w in label[1:-1]:
                    newtree.add_edge(new_node,new_node+1,w)
                    new_node += 1
                newtree.add_edge(new_node,v,label[-1])
                new_node += 1
        return newtree
示例#3
0
 def add_edge(self, i, j, label=1):
     """
     EXAMPLES::
     
         sage: from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class
         sage: d = DynkinDiagram_class(CartanType(['A',3]))
         sage: list(sorted(d.edges()))
         []
         sage: d.add_edge(2, 3)
         sage: list(sorted(d.edges()))
         [(2, 3, 1), (3, 2, 1)]
     """
     DiGraph.add_edge(self, i, j, label)
     if not self.has_edge(j,i):
         self.add_edge(j,i,1)
示例#4
0
 def add_edge(self, i, j, label=1):
     """
     EXAMPLES::
     
         sage: from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class
         sage: d = DynkinDiagram_class(CartanType(['A',3]))
         sage: list(sorted(d.edges()))
         []
         sage: d.add_edge(2, 3)
         sage: list(sorted(d.edges()))
         [(2, 3, 1), (3, 2, 1)]
     """
     DiGraph.add_edge(self, i, j, label)
     if not self.has_edge(j, i):
         self.add_edge(j, i, 1)
示例#5
0
    def to_dag(self):
        """
        Returns a directed acyclic graph corresponding to the skew
        partition.
        
        EXAMPLES::
        
            sage: dag = SkewPartition([[3, 2, 1], [1, 1]]).to_dag()
            sage: dag.edges()
            [('0,1', '0,2', None), ('0,1', '1,1', None)]
            sage: dag.vertices()
            ['0,1', '0,2', '1,1', '2,0']
        """
        i = 0

        #Make the skew tableau from the shape
        skew = [[1]*row_length for row_length in self.outer()]
        inner = self.inner()
        for i in range(len(inner)):
            for j in range(inner[i]):
                skew[i][j] = None

        G = DiGraph()
        for row in range(len(skew)):
            for column in range(len(skew[row])):
                if skew[row][column] is not None:
                    string = "%d,%d" % (row, column)
                    G.add_vertex(string)
                    #Check to see if there is a node to the right
                    if column != len(skew[row]) - 1:
                        newstring = "%d,%d" % (row, column+1)
                        G.add_edge(string, newstring)

                    #Check to see if there is anything below
                    if row != len(skew) - 1:
                        if len(skew[row+1]) > column:
                            if skew[row+1][column] is not None:
                                newstring = "%d,%d" % (row+1, column)
                                G.add_edge(string, newstring)
        return G
示例#6
0
    def to_dag(self):
        """
        Returns a directed acyclic graph corresponding to the skew
        partition.
        
        EXAMPLES::
        
            sage: dag = SkewPartition([[3, 2, 1], [1, 1]]).to_dag()
            sage: dag.edges()
            [('0,1', '0,2', None), ('0,1', '1,1', None)]
            sage: dag.vertices()
            ['0,1', '0,2', '1,1', '2,0']
        """
        i = 0

        #Make the skew tableau from the shape
        skew = [[1] * row_length for row_length in self.outer()]
        inner = self.inner()
        for i in range(len(inner)):
            for j in range(inner[i]):
                skew[i][j] = None

        G = DiGraph()
        for row in range(len(skew)):
            for column in range(len(skew[row])):
                if skew[row][column] is not None:
                    string = "%d,%d" % (row, column)
                    G.add_vertex(string)
                    #Check to see if there is a node to the right
                    if column != len(skew[row]) - 1:
                        newstring = "%d,%d" % (row, column + 1)
                        G.add_edge(string, newstring)

                    #Check to see if there is anything below
                    if row != len(skew) - 1:
                        if len(skew[row + 1]) > column:
                            if skew[row + 1][column] is not None:
                                newstring = "%d,%d" % (row + 1, column)
                                G.add_edge(string, newstring)
        return G
示例#7
0
    def _digraph(self):
        r"""
        Constructs the underlying digraph and stores the result as an
        attribute.

        EXAMPLES::
        
            sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
            sage: ops = [SwapIncreasingOperator(i) for i in range(2)]
            sage: Y = YangBaxterGraph(root=(1,2,3), operators=ops)
            sage: Y._digraph
            Digraph on 6 vertices
        """
        digraph = DiGraph()
        digraph.add_vertex(self._root)
        queue = [self._root]
        while queue:
            u = queue.pop()
            for (v, l) in self._succesors(u):
                if v not in digraph:
                    queue.append(v)
                digraph.add_edge(u, v, l)
        return digraph
示例#8
0
    def _digraph(self):
        r"""
        Constructs the underlying digraph and stores the result as an
        attribute.

        EXAMPLES::
        
            sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
            sage: ops = [SwapIncreasingOperator(i) for i in range(2)]
            sage: Y = YangBaxterGraph(root=(1,2,3), operators=ops)
            sage: Y._digraph
            Digraph on 6 vertices
        """
        digraph = DiGraph()
        digraph.add_vertex(self._root)
        queue = [self._root]
        while queue:
            u = queue.pop()
            for (v, l) in self._succesors(u):
                if v not in digraph:
                    queue.append(v)
                digraph.add_edge(u, v, l)
        return digraph
示例#9
0
def _digraph_mutate(dg, k, frozen=None):
    """
    Return a digraph obtained from ``dg`` by mutating at vertex ``k``.

    Vertices can be labelled by anything, and frozen vertices must
    be explicitly given.

    INPUT:

    - ``dg`` -- a digraph with integral edge labels with ``n+m`` vertices
    - ``k`` -- the vertex at which ``dg`` is mutated
    - ``frozen`` -- the list of frozen vertices (default is the empty list)

    EXAMPLES::

        sage: from sage.combinat.cluster_algebra_quiver.mutation_class import _digraph_mutate
        sage: from sage.combinat.cluster_algebra_quiver.quiver import ClusterQuiver
        sage: dg = ClusterQuiver(['A',4]).digraph()
        sage: dg.edges()
        [(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]
        sage: _digraph_mutate(dg,2).edges()
        [(0, 1, (1, -1)), (1, 2, (1, -1)), (3, 2, (1, -1))]

    TESTS::

       sage: dg = DiGraph([('a','b',(1,-1)),('c','a',(1,-1))])
       sage: _digraph_mutate(dg,'a').edges()
       [('a', 'c', (1, -1)), ('b', 'a', (1, -1)), ('c', 'b', (1, -1))]
       sage: _digraph_mutate(dg,'a',frozen=['b','c']).edges()
       [('a', 'c', (1, -1)), ('b', 'a', (1, -1))]

       sage: dg = DiGraph([('a','b',(2,-2)),('c','a',(2,-2)),('b','c',(2,-2))])
       sage: _digraph_mutate(dg,'a').edges()
       [('a', 'c', (2, -2)), ('b', 'a', (2, -2)), ('c', 'b', (2, -2))]
    """
    # assert sorted(list(dg)) == list(range(n + m))
    # this is not assumed anymore
    if frozen is None:
        frozen = []

    edge_it = dg.incoming_edge_iterator(dg, True)
    edges = {(v1, v2): label for v1, v2, label in edge_it}
    edge_it = dg.incoming_edge_iterator([k], True)
    in_edges = [(v1, v2, label) for v1, v2, label in edge_it]
    edge_it = dg.outgoing_edge_iterator([k], True)
    out_edges = [(v1, v2, label) for v1, v2, label in edge_it]

    in_edges_new = [(v2, v1, (-label[1], -label[0]))
                    for (v1, v2, label) in in_edges]
    out_edges_new = [(v2, v1, (-label[1], -label[0]))
                     for (v1, v2, label) in out_edges]
    diag_edges_new = []
    diag_edges_del = []

    for (v1, v2, label1) in in_edges:
        l11, l12 = label1
        for (w1, w2, label2) in out_edges:
            if v1 in frozen and w2 in frozen:
                continue
            l21, l22 = label2
            if (v1, w2) in edges:
                diag_edges_del.append((v1, w2))
                a, b = edges[(v1, w2)]
                a, b = a + l11 * l21, b - l12 * l22
                diag_edges_new.append((v1, w2, (a, b)))
            elif (w2, v1) in edges:
                diag_edges_del.append((w2, v1))
                a, b = edges[(w2, v1)]
                a, b = b + l11 * l21, a - l12 * l22
                if a < 0:
                    diag_edges_new.append((w2, v1, (b, a)))
                elif a > 0:
                    diag_edges_new.append((v1, w2, (a, b)))
            else:
                a, b = l11 * l21, -l12 * l22
                diag_edges_new.append((v1, w2, (a, b)))

    del_edges = [tuple(ed[:2]) for ed in in_edges + out_edges]
    del_edges += diag_edges_del
    new_edges = in_edges_new + out_edges_new
    new_edges += diag_edges_new
    new_edges += [(v1, v2, edges[(v1, v2)]) for (v1, v2) in edges
                  if (v1, v2) not in del_edges]

    dg_new = DiGraph()
    dg_new.add_vertices(list(dg))
    for v1, v2, label in new_edges:
        dg_new.add_edge(v1, v2, label)

    return dg_new
示例#10
0
def Hasse_diagram_from_incidences(atom_to_coatoms, coatom_to_atoms,
                                  face_constructor=None,
                                  required_atoms=None,
                                  key = None,
                                  **kwds):
    r"""
    Compute the Hasse diagram of an atomic and coatomic lattice.

    INPUT:

    - ``atom_to_coatoms`` -- list, ``atom_to_coatom[i]`` should list all
      coatoms over the ``i``-th atom;

    - ``coatom_to_atoms`` -- list, ``coatom_to_atom[i]`` should list all
      atoms under the ``i``-th coatom;

    - ``face_constructor`` -- function or class taking as the first two
      arguments sorted :class:`tuple` of integers and any keyword arguments.
      It will be called to construct a face over atoms passed as the first
      argument and under coatoms passed as the second argument. Default
      implementation will just return these two tuples as a tuple;

    - ``required_atoms`` -- list of atoms (default:None). Each
      non-empty "face" requires at least on of the specified atoms
      present. Used to ensure that each face has a vertex.

    - ``key`` -- any hashable value (default: None). It is passed down
      to :class:`~sage.combinat.posets.posets.FinitePoset`.

    - all other keyword arguments will be passed to ``face_constructor`` on
      each call.

    OUTPUT:

    - :class:`finite poset <sage.combinat.posets.posets.FinitePoset>` with
      elements constructed by ``face_constructor``.

    .. NOTE::

        In addition to the specified partial order, finite posets in Sage have
        internal total linear order of elements which extends the partial one.
        This function will try to make this internal order to start with the
        bottom and atoms in the order corresponding to ``atom_to_coatoms`` and
        to finish with coatoms in the order corresponding to
        ``coatom_to_atoms`` and the top. This may not be possible if atoms and
        coatoms are the same, in which case the preference is given to the
        first list.

    ALGORITHM:

    The detailed description of the used algorithm is given in [KP2002]_.

    The code of this function follows the pseudo-code description in the
    section 2.5 of the paper, although it is mostly based on frozen sets
    instead of sorted lists - this makes the implementation easier and should
    not cost a big performance penalty. (If one wants to make this function
    faster, it should be probably written in Cython.)

    While the title of the paper mentions only polytopes, the algorithm (and
    the implementation provided here) is applicable to any atomic and coatomic
    lattice if both incidences are given, see Section 3.4.

    In particular, this function can be used for strictly convex cones and
    complete fans.

    REFERENCES:

    ..  [KP2002]
        Volker Kaibel and Marc E. Pfetsch,
        "Computing the Face Lattice of a Polytope from its Vertex-Facet
        Incidences", Computational Geometry: Theory and Applications,
        Volume 23, Issue 3 (November 2002), 281-290.
        Available at http://portal.acm.org/citation.cfm?id=763203
        and free of charge at http://arxiv.org/abs/math/0106043

    AUTHORS:

    - Andrey Novoseltsev (2010-05-13) with thanks to Marshall Hampton for the
      reference.

    EXAMPLES:

    Let's construct the Hasse diagram of a lattice of subsets of {0, 1, 2}.
    Our atoms are {0}, {1}, and {2}, while our coatoms are {0,1}, {0,2}, and
    {1,2}. Then incidences are ::

        sage: atom_to_coatoms = [(0,1), (0,2), (1,2)]
        sage: coatom_to_atoms = [(0,1), (0,2), (1,2)]

    and we can compute the Hasse diagram as ::

        sage: L = sage.geometry.cone.Hasse_diagram_from_incidences(
        ...                       atom_to_coatoms, coatom_to_atoms)
        sage: L
        Finite poset containing 8 elements
        sage: for level in L.level_sets(): print level
        [((), (0, 1, 2))]
        [((0,), (0, 1)), ((1,), (0, 2)), ((2,), (1, 2))]
        [((0, 1), (0,)), ((0, 2), (1,)), ((1, 2), (2,))]
        [((0, 1, 2), ())]

    For more involved examples see the *source code* of
    :meth:`sage.geometry.cone.ConvexRationalPolyhedralCone.face_lattice` and
    :meth:`sage.geometry.fan.RationalPolyhedralFan._compute_cone_lattice`.
    """
    from sage.graphs.all import DiGraph
    from sage.combinat.posets.posets import FinitePoset
    def default_face_constructor(atoms, coatoms, **kwds):
        return (atoms, coatoms)
    if face_constructor is None:
        face_constructor = default_face_constructor
    atom_to_coatoms = [frozenset(atc) for atc in atom_to_coatoms]
    A = frozenset(range(len(atom_to_coatoms)))  # All atoms
    coatom_to_atoms = [frozenset(cta) for cta in coatom_to_atoms]
    C = frozenset(range(len(coatom_to_atoms)))  # All coatoms
    # Comments with numbers correspond to steps in Section 2.5 of the article
    L = DiGraph(1)       # 3: initialize L
    faces = dict()
    atoms = frozenset()
    coatoms = C
    faces[atoms, coatoms] = 0
    next_index = 1
    Q = [(atoms, coatoms)]              # 4: initialize Q with the empty face
    while Q:                            # 5
        q_atoms, q_coatoms = Q.pop()    # 6: remove some q from Q
        q = faces[q_atoms, q_coatoms]
        # 7: compute H = {closure(q+atom) : atom not in atoms of q}
        H = dict()
        candidates = set(A.difference(q_atoms))
        for atom in candidates:
            coatoms = q_coatoms.intersection(atom_to_coatoms[atom])
            atoms = A
            for coatom in coatoms:
                atoms = atoms.intersection(coatom_to_atoms[coatom])
            H[atom] = (atoms, coatoms)
        # 8: compute the set G of minimal sets in H
        minimals = set([])
        while candidates:
            candidate = candidates.pop()
            atoms = H[candidate][0]
            if atoms.isdisjoint(candidates) and atoms.isdisjoint(minimals):
                minimals.add(candidate)
        # Now G == {H[atom] : atom in minimals}
        for atom in minimals:   # 9: for g in G:
            g_atoms, g_coatoms = H[atom]
            if not required_atoms is None:
                if g_atoms.isdisjoint(required_atoms):
                    continue
            if (g_atoms, g_coatoms) in faces:
                g = faces[g_atoms, g_coatoms]
            else:               # 11: if g was newly created
                g = next_index
                faces[g_atoms, g_coatoms] = g
                next_index += 1
                Q.append((g_atoms, g_coatoms))  # 12
            L.add_edge(q, g)                    # 14
    # End of algorithm, now construct a FinitePoset.
    # In principle, it is recommended to use Poset or in this case perhaps
    # even LatticePoset, but it seems to take several times more time
    # than the above computation, makes unnecessary copies, and crashes.
    # So for now we will mimic the relevant code from Poset.

    # Enumeration of graph vertices must be a linear extension of the poset
    new_order = L.topological_sort()
    # Make sure that coatoms are in the end in proper order
    tail = [faces[atoms, frozenset([coatom])]
            for coatom, atoms in enumerate(coatom_to_atoms)]
    tail.append(faces[A, frozenset()])
    new_order = [n for n in new_order if n not in tail] + tail
    # Make sure that atoms are in the beginning in proper order
    head = [0] # We know that the empty face has index 0
    head.extend(faces[frozenset([atom]), coatoms]
                for atom, coatoms in enumerate(atom_to_coatoms)
                if required_atoms is None or atom in required_atoms)
    new_order = head + [n for n in new_order if n not in head]
    # "Invert" this list to a dictionary
    labels = dict()
    for new, old in enumerate(new_order):
        labels[old] = new
    L.relabel(labels)
    # Construct the actual poset elements
    elements = [None] * next_index
    for face, index in faces.items():
        atoms, coatoms = face
        elements[labels[index]] = face_constructor(
                        tuple(sorted(atoms)), tuple(sorted(coatoms)), **kwds)
    return FinitePoset(L, elements, key = key)
示例#11
0
    def RandomPoset(n,p):
        r"""
        Generate a random poset on ``n`` vertices according to a
        probability ``p``.

        INPUT:

        - ``n`` - number of vertices, a non-negative integer

        - ``p`` - a probability, a real number between 0 and 1 (inclusive)

        OUTPUT:

        A poset on ``n`` vertices.  The construction decides to make an
        ordered pair of vertices comparable in the poset with probability
        ``p``, however a pair is not made comparable if it would violate
        the defining properties of a poset, such as transitivity.

        So in practice, once the probability exceeds a small number the
        generated posets may be very similar to a chain.  So to create
        interesting examples, keep the probability small, perhaps on the
        order of `1/n`.

        EXAMPLES::

            sage: Posets.RandomPoset(17,.15)
            Finite poset containing 17 elements

        TESTS::

            sage: Posets.RandomPoset('junk', 0.5)
            Traceback (most recent call last):
            ...
            TypeError: number of elements must be an integer, not junk

            sage: Posets.RandomPoset(-6, 0.5)
            Traceback (most recent call last):
            ...
            ValueError: number of elements must be non-negative, not -6

            sage: Posets.RandomPoset(6, 'garbage')
            Traceback (most recent call last):
            ...
            TypeError: probability must be a real number, not garbage

            sage: Posets.RandomPoset(6, -0.5)
            Traceback (most recent call last):
            ...
            ValueError: probability must be between 0 and 1, not -0.5
        """
        try:
            n = Integer(n)
        except:
            raise TypeError("number of elements must be an integer, not {0}".format(n))
        if n < 0:
            raise ValueError("number of elements must be non-negative, not {0}".format(n))
        try:
            p = float(p)
        except:
            raise TypeError("probability must be a real number, not {0}".format(p))
        if p < 0 or p> 1:
            raise ValueError("probability must be between 0 and 1, not {0}".format(p))
        
        D = DiGraph(loops=False,multiedges=False)
        D.add_vertices(range(n))
        for i in range(n):
            for j in range(n):
                if random.random() < p:
                    D.add_edge(i,j)
                    if not D.is_directed_acyclic():
                        D.delete_edge(i,j)
        return Poset(D,cover_relations=False)
示例#12
0
def _digraph_mutate(dg, k, frozen=None):
    """
    Return a digraph obtained from ``dg`` by mutating at vertex ``k``.

    Vertices can be labelled by anything, and frozen vertices must
    be explicitly given.

    INPUT:

    - ``dg`` -- a digraph with integral edge labels with ``n+m`` vertices
    - ``k`` -- the vertex at which ``dg`` is mutated
    - ``frozen`` -- the list of frozen vertices (default is the empty list)

    EXAMPLES::

        sage: from sage.combinat.cluster_algebra_quiver.mutation_class import _digraph_mutate
        sage: from sage.combinat.cluster_algebra_quiver.quiver import ClusterQuiver
        sage: dg = ClusterQuiver(['A',4]).digraph()
        sage: dg.edges()
        [(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]
        sage: _digraph_mutate(dg,2).edges()
        [(0, 1, (1, -1)), (1, 2, (1, -1)), (3, 2, (1, -1))]

    TESTS::

       sage: dg = DiGraph([('a','b',(1,-1)),('c','a',(1,-1))])
       sage: _digraph_mutate(dg,'a').edges()
       [('a', 'c', (1, -1)), ('b', 'a', (1, -1)), ('c', 'b', (1, -1))]
       sage: _digraph_mutate(dg,'a',frozen=['b','c']).edges()
       [('a', 'c', (1, -1)), ('b', 'a', (1, -1))]

       sage: dg = DiGraph([('a','b',(2,-2)),('c','a',(2,-2)),('b','c',(2,-2))])
       sage: _digraph_mutate(dg,'a').edges()
       [('a', 'c', (2, -2)), ('b', 'a', (2, -2)), ('c', 'b', (2, -2))]
    """
    # assert sorted(list(dg)) == list(range(n + m))
    # this is not assumed anymore
    if frozen is None:
        frozen = []

    edge_it = dg.incoming_edge_iterator(dg, True)
    edges = {(v1, v2): label for v1, v2, label in edge_it}
    edge_it = dg.incoming_edge_iterator([k], True)
    in_edges = [(v1, v2, label) for v1, v2, label in edge_it]
    edge_it = dg.outgoing_edge_iterator([k], True)
    out_edges = [(v1, v2, label) for v1, v2, label in edge_it]

    in_edges_new = [(v2, v1, (-label[1], -label[0]))
                    for (v1, v2, label) in in_edges]
    out_edges_new = [(v2, v1, (-label[1], -label[0]))
                     for (v1, v2, label) in out_edges]
    diag_edges_new = []
    diag_edges_del = []

    for (v1, v2, label1) in in_edges:
        l11, l12 = label1
        for (w1, w2, label2) in out_edges:
            if v1 in frozen and w2 in frozen:
                continue
            l21, l22 = label2
            if (v1, w2) in edges:
                diag_edges_del.append((v1, w2))
                a, b = edges[(v1, w2)]
                a, b = a + l11 * l21, b - l12 * l22
                diag_edges_new.append((v1, w2, (a, b)))
            elif (w2, v1) in edges:
                diag_edges_del.append((w2, v1))
                a, b = edges[(w2, v1)]
                a, b = b + l11 * l21, a - l12 * l22
                if a < 0:
                    diag_edges_new.append((w2, v1, (b, a)))
                elif a > 0:
                    diag_edges_new.append((v1, w2, (a, b)))
            else:
                a, b = l11 * l21, -l12 * l22
                diag_edges_new.append((v1, w2, (a, b)))

    del_edges = [tuple(ed[:2]) for ed in in_edges + out_edges]
    del_edges += diag_edges_del
    new_edges = in_edges_new + out_edges_new
    new_edges += diag_edges_new
    new_edges += [(v1, v2, edges[(v1, v2)]) for (v1, v2) in edges
                  if (v1, v2) not in del_edges]

    dg_new = DiGraph()
    dg_new.add_vertices(list(dg))
    for v1, v2, label in new_edges:
        dg_new.add_edge(v1, v2, label)

    return dg_new
示例#13
0
    def RandomPoset(n, p):
        r"""
        Generate a random poset on ``n`` vertices according to a
        probability ``p``.

        INPUT:

        - ``n`` - number of vertices, a non-negative integer

        - ``p`` - a probability, a real number between 0 and 1 (inclusive)

        OUTPUT:

        A poset on ``n`` vertices.  The construction decides to make an
        ordered pair of vertices comparable in the poset with probability
        ``p``, however a pair is not made comparable if it would violate
        the defining properties of a poset, such as transitivity.

        So in practice, once the probability exceeds a small number the
        generated posets may be very similar to a chain.  So to create
        interesting examples, keep the probability small, perhaps on the
        order of `1/n`.

        EXAMPLES::

            sage: Posets.RandomPoset(17,.15)
            Finite poset containing 17 elements

        TESTS::

            sage: Posets.RandomPoset('junk', 0.5)
            Traceback (most recent call last):
            ...
            TypeError: number of elements must be an integer, not junk

            sage: Posets.RandomPoset(-6, 0.5)
            Traceback (most recent call last):
            ...
            ValueError: number of elements must be non-negative, not -6

            sage: Posets.RandomPoset(6, 'garbage')
            Traceback (most recent call last):
            ...
            TypeError: probability must be a real number, not garbage

            sage: Posets.RandomPoset(6, -0.5)
            Traceback (most recent call last):
            ...
            ValueError: probability must be between 0 and 1, not -0.5
        """
        try:
            n = Integer(n)
        except:
            raise TypeError(
                "number of elements must be an integer, not {0}".format(n))
        if n < 0:
            raise ValueError(
                "number of elements must be non-negative, not {0}".format(n))
        try:
            p = float(p)
        except:
            raise TypeError(
                "probability must be a real number, not {0}".format(p))
        if p < 0 or p > 1:
            raise ValueError(
                "probability must be between 0 and 1, not {0}".format(p))

        D = DiGraph(loops=False, multiedges=False)
        D.add_vertices(range(n))
        for i in range(n):
            for j in range(n):
                if random.random() < p:
                    D.add_edge(i, j)
                    if not D.is_directed_acyclic():
                        D.delete_edge(i, j)
        return Poset(D, cover_relations=False)