示例#1
0
    def _multiply_basis(
        self, left, right
    ):  # TODO: factor out this code for all bases (as is done for coercions)
        """
        Returns the product of ``left`` and ``right``.

        INPUT:

        - ``self`` -- a Schur symmetric function basis
        - ``left``, ``right`` -- partitions

        OUPUT:

        - an element of the Schur basis, the product of ``left`` and ``right``

        TESTS::

            sage: s = SymmetricFunctions(QQ).s()
            sage: a = s([2,1]) + 1; a
            s[] + s[2, 1]
            sage: a^2   # indirect doctest
            s[] + 2*s[2, 1] + s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]

        Examples failing with three different messages in symmetrica::

            sage: s[123,1]*s[1,1]
            s[123, 1, 1, 1] + s[123, 2, 1] + s[124, 1, 1] + s[124, 2]
            sage: s[123]*s[2,1]
            s[123, 2, 1] + s[124, 1, 1] + s[124, 2] + s[125, 1]
            sage: s[125]*s[3]
            s[125, 3] + s[126, 2] + s[127, 1] + s[128]

        ::

            sage: QQx.<x> = QQ[]
            sage: s = SymmetricFunctions(QQx).s()
            sage: a = x^2*s([2,1]) + 2*x; a
            2*x*s[] + x^2*s[2, 1]
            sage: a^2
            4*x^2*s[] + 4*x^3*s[2, 1] + x^4*s[2, 2, 1, 1] + x^4*s[2, 2, 2] + x^4*s[3, 1, 1, 1] + 2*x^4*s[3, 2, 1] + x^4*s[3, 3] + x^4*s[4, 1, 1] + x^4*s[4, 2]

        ::

            sage: 0*s([2,1])
            0
        """
        import sage.libs.lrcalc.lrcalc as lrcalc
        return lrcalc.mult(left, right)
示例#2
0
文件: schur.py 项目: jeromeca/sagesmc
    def _multiply_basis(self, left, right):  # TODO: factor out this code for all bases (as is done for coercions)
        """
        Returns the product of ``left`` and ``right``.

        INPUT:

        - ``self`` -- a Schur symmetric function basis
        - ``left``, ``right`` -- partitions

        OUPUT:

        - an element of the Schur basis, the product of ``left`` and ``right``

        TESTS::

            sage: s = SymmetricFunctions(QQ).s()
            sage: a = s([2,1]) + 1; a
            s[] + s[2, 1]
            sage: a^2   # indirect doctest
            s[] + 2*s[2, 1] + s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]

        Examples failing with three different messages in symmetrica::

            sage: s[123,1]*s[1,1]
            s[123, 1, 1, 1] + s[123, 2, 1] + s[124, 1, 1] + s[124, 2]
            sage: s[123]*s[2,1]
            s[123, 2, 1] + s[124, 1, 1] + s[124, 2] + s[125, 1]
            sage: s[125]*s[3]
            s[125, 3] + s[126, 2] + s[127, 1] + s[128]

        ::

            sage: QQx.<x> = QQ[]
            sage: s = SymmetricFunctions(QQx).s()
            sage: a = x^2*s([2,1]) + 2*x; a
            2*x*s[] + x^2*s[2, 1]
            sage: a^2
            4*x^2*s[] + 4*x^3*s[2, 1] + x^4*s[2, 2, 1, 1] + x^4*s[2, 2, 2] + x^4*s[3, 1, 1, 1] + 2*x^4*s[3, 2, 1] + x^4*s[3, 3] + x^4*s[4, 1, 1] + x^4*s[4, 2]

        ::

            sage: 0*s([2,1])
            0
        """
        import sage.libs.lrcalc.lrcalc as lrcalc

        return lrcalc.mult(left, right)
示例#3
0
    def product_on_basis(self, left, right):
        """
        Return the product of ``left`` and ``right``.

        INPUT:

        - ``self`` -- a Schur symmetric function basis
        - ``left``, ``right`` -- partitions

        OUTPUT:

        - an element of the Schur basis, the product of ``left`` and ``right``

        TESTS::

            sage: s = SymmetricFunctions(QQ).s()
            sage: a = s([2,1]) + 1; a
            s[] + s[2, 1]
            sage: a^2   # indirect doctest
            s[] + 2*s[2, 1] + s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]

        Examples failing with three different messages in symmetrica::

            sage: s[123,1]*s[1,1]
            s[123, 1, 1, 1] + s[123, 2, 1] + s[124, 1, 1] + s[124, 2]
            sage: s[123]*s[2,1]
            s[123, 2, 1] + s[124, 1, 1] + s[124, 2] + s[125, 1]
            sage: s[125]*s[3]
            s[125, 3] + s[126, 2] + s[127, 1] + s[128]

        ::

            sage: QQx.<x> = QQ[]
            sage: s = SymmetricFunctions(QQx).s()
            sage: a = x^2*s([2,1]) + 2*x; a
            2*x*s[] + x^2*s[2, 1]
            sage: a^2
            4*x^2*s[] + 4*x^3*s[2, 1] + x^4*s[2, 2, 1, 1] + x^4*s[2, 2, 2] + x^4*s[3, 1, 1, 1] + 2*x^4*s[3, 2, 1] + x^4*s[3, 3] + x^4*s[4, 1, 1] + x^4*s[4, 2]

        ::

            sage: 0*s([2,1])
            0
        """
        return self._from_dict(lrcalc.mult(left, right))