示例#1
0
    def rescale_row(self, i: int, s) -> HtmlFragment:
        """Replace i-th row of self by s times i-th row of self. The operation is done in place."""

        return HtmlFragment(''.join([r'\[',
                                     self._latex_(),
                                     self._format_row_operations(self._rescale_row(i, s)),
                                     r'\rightarrow',
                                     self._latex_() + r'\]']))
示例#2
0
 def lu_swap(self, r1: int, r2: int) -> HtmlFragment:
     """Swap rows r1 and r2 of self, up to second diagonal.
     Used in LUP factorization. This operation is done in place."""
     return HtmlFragment(''.join([r'\[',
                                  self._latex_(),
                                  self._format_row_operations(self._lu_swap(r1, r2)),
                                  r'\rightarrow',
                                  self._latex_(),
                                  r'\]']))
示例#3
0
    def swap_rows(self, r1: int, r2: int) -> HtmlFragment:
        """Swap rows r1 and r2 of self. The operation is done in place."""

        return HtmlFragment(''.join([r'\[',
                                     self._latex_(),
                                     self._format_row_operations(self._swap_rows(r1, r2)),
                                     r'\rightarrow',
                                     self._latex_(),
                                     r'\]']))
示例#4
0
    def add_multiple_of_row(self, i: int, j: int, s) -> HtmlFragment:
        """Add s times row j to row i. The operation is done in place."""

        return HtmlFragment(''.join([r'\[',
                                     self._latex_(),
                                     self._format_row_operations(self._add_multiple_of_row(i, j, s)),
                                     r'\rightarrow',
                                     self._latex_(),
                                     r'\]']))
示例#5
0
    def col_expansion(self, i: int) -> HtmlFragment:
        """Laplace expansion on i-th column."""

        output = list()
        output.append(r'\[')
        for j in range(self.M.nrows()):
            if j > 0:
                output.append('+')

            output.append(r'(-1)^{' f'{j+1} + {i+1}' r'}\cdot')
            output.append(f'({self.M[j, i]})'
                          r'\cdot')

            N = self.M[[k for k in range(self.M.nrows()) if k != j],
                       [k for k in range(self.M.ncols()) if k != i]]
            output.append(IMatrix(N).as_determinant()._latex_())
        output.append(r'\]')

        return HtmlFragment(''.join(output))
示例#6
0
def my_run_simplex_method(self):
    output = []
    while not self.is_optimal():
        self.pivots += 1
        if self.entering() is None:
            self.enter(self.pivot_select_entering())
        if self.leaving() is None:
            if self.possible_leaving():
                self.leave(self.pivot_select_leaving())

        output.append(self._html_())
        if self.leaving() is None:
            output.append("The problem is unbounded in $()$ direction.".format(
                latex(self.entering())))
            break
        output.append(self._preupdate_output("primal"))
        self.update()
    if self.is_optimal():
        output.append(self._html_())
    return HtmlFragment("\n".join(output))
示例#7
0
    def to_reduced_form(self):
        """Transform self to the reduced echelon form of self."""
        output = list()

        for changed_row in range(1, self.M.nrows()):
            operations = {i: r'\ ' for i in range(self.M.nrows())}
            unchanged = self._latex_()

            for row in range(0, changed_row):
                factor = -self.M[row][changed_row]
                operations.update(self._add_multiple_of_row(row, changed_row, factor))

            output.append(r'\[')
            output.append(unchanged)
            output.append(self._format_row_operations(operations))
            output.append(r'\rightarrow')
            output.append(self._latex_())
            output.append(r'\]')

        return HtmlFragment('\n'.join(output))
示例#8
0
文件: table.py 项目: yjjcc/sage
    def _html_(self):
        r"""
        HTML representation of a table.

        Strings of html will be parsed for math inside dollar and
        double-dollar signs.  2D graphics will be displayed in the
        cells.  Expressions will be latexed.

        The ``align`` option for tables is ignored in HTML
        output. Specifying ``header_column=True`` may not have any
        visible effect in the Sage notebook, depending on the version
        of the notebook.

        OUTPUT:

        A :class:`~sage.misc.html.HtmlFragment` instance.

        EXAMPLES::

            sage: T = table([[r'$\sin(x)$', '$x$', 'text'], [1,34342,3], [identity_matrix(2),5,6]])
            sage: T._html_()
            <div.../div>
            sage: print(T._html_())
            <div class="notruncate">
            <table  class="table_form">
            <tbody>
            <tr class ="row-a">
            <td><script type="math/tex">\sin(x)</script></td>
            <td><script type="math/tex">x</script></td>
            <td>text</td>
            </tr>
            <tr class ="row-b">
            <td><script type="math/tex">1</script></td>
            <td><script type="math/tex">34342</script></td>
            <td><script type="math/tex">3</script></td>
            </tr>
            <tr class ="row-a">
            <td><script type="math/tex">\left(\begin{array}{rr}
            1 & 0 \\
            0 & 1
            \end{array}\right)</script></td>
            <td><script type="math/tex">5</script></td>
            <td><script type="math/tex">6</script></td>
            </tr>
            </tbody>
            </table>
            </div>

        Note that calling ``html(table(...))`` has the same effect as
        calling ``table(...)._html_()``::

            sage: T = table([["$x$", r"$\sin(x)$"]] + [(x,n(sin(x), digits=2)) for x in [0..3]], header_row=True, frame=True)
            sage: T
            +-----+-----------+
            | $x$ | $\sin(x)$ |
            +=====+===========+
            | 0   | 0.00      |
            +-----+-----------+
            | 1   | 0.84      |
            +-----+-----------+
            | 2   | 0.91      |
            +-----+-----------+
            | 3   | 0.14      |
            +-----+-----------+
            sage: print(html(T))
            <div class="notruncate">
            <table border="1" class="table_form">
            <tbody>
            <tr>
            <th><script type="math/tex">x</script></th>
            <th><script type="math/tex">\sin(x)</script></th>
            </tr>
            <tr class ="row-a">
            <td><script type="math/tex">0</script></td>
            <td><script type="math/tex">0.00</script></td>
            </tr>
            <tr class ="row-b">
            <td><script type="math/tex">1</script></td>
            <td><script type="math/tex">0.84</script></td>
            </tr>
            <tr class ="row-a">
            <td><script type="math/tex">2</script></td>
            <td><script type="math/tex">0.91</script></td>
            </tr>
            <tr class ="row-b">
            <td><script type="math/tex">3</script></td>
            <td><script type="math/tex">0.14</script></td>
            </tr>
            </tbody>
            </table>
            </div>
        """
        from itertools import cycle
        rows = self._rows
        header_row = self._options['header_row']
        if self._options['frame']:
            frame = 'border="1"'
        else:
            frame = ''
        s = StringIO()
        if rows:
            s.writelines([
                # If the table has < 100 rows, don't truncate the output in the notebook
                '<div class="notruncate">\n'
                if len(rows) <= 100 else '<div class="truncate">',
                '<table {} class="table_form">\n'.format(frame),
                '<tbody>\n',
            ])
            # First row:
            if header_row:
                s.write('<tr>\n')
                self._html_table_row(s, rows[0], header=header_row)
                s.write('</tr>\n')
                rows = rows[1:]

            # Other rows:
            for row_class, row in zip(cycle(["row-a", "row-b"]), rows):
                s.write('<tr class ="{}">\n'.format(row_class))
                self._html_table_row(s, row, header=False)
                s.write('</tr>\n')
            s.write('</tbody>\n</table>\n</div>')
        from sage.misc.html import HtmlFragment
        return HtmlFragment(s.getvalue())
示例#9
0
    def to_echelon_form(self) -> HtmlFragment:
        """Transform self to the echelon form of self."""

        output = list()

        # Gaussian elimination algorithm is derived from
        # https://ask.sagemath.org/question/8840/how-to-show-the-steps-of-gauss-method/

        col = 0  # all cols before this are already done
        for row in range(0, self.M.nrows()):
            # Need to swap in a nonzero entry from below
            while col < self.M.ncols() and self.M[row][col] == 0:
                for i in self.M.nonzero_positions_in_column(col):
                    if i > row:
                        output.append(r'\[')
                        output.append(self._latex_())
                        output.append(self._format_row_operations(self._swap_rows(row, i)))
                        output.append(r'\rightarrow')
                        output.append(self._latex_())
                        output.append(r'\]')
                        break
                else:
                    col += 1

            if col >= self.M.ncols() - self.separate:
                break

            # Now guaranteed M[row][col] != 0
            if self.M[row][col] != 1:
                if not is_invertible(self.M[row][col]):
         
                    output.append(f'<br>Przerywam eliminację bo nie wiem, czy wyrażenie '
                                  f'${sage.all.latex(self.M[row][col])}$ jest niezerowe.')
                    break
                else:
                    output.append(r'\[')
                    output.append(self._latex_())
                    output.append(self._format_row_operations(self._rescale_row(row, 1 / self.M[row][col])))
                    output.append(r'\rightarrow')
                    output.append(self._latex_())
                    output.append(r'\]')

            change_flag = False
            unchanged = self._latex_()
            operations = dict()
            for changed_row in range(row + 1, self.M.nrows()):
                if self.M[changed_row][col] != 0:
                    change_flag = True
                    factor = -1 * self.M[changed_row][col] / self.M[row][col]
                    operations.update(self._add_multiple_of_row(changed_row, row, factor))

            if change_flag:
                output.append(r'\[')
                output.append(unchanged)
                output.append(self._format_row_operations(operations))
                output.append(r'\rightarrow')
                output.append(self._latex_())
                output.append(r'\]')

            col += 1

        return HtmlFragment('\n'.join(output))