示例#1
0
    def plot_generators(self):
        r"""
        Plot ray generators.

        Ray generators must be specified during construction or using
        :meth:`set_rays` before calling this method.

        OUTPUT:

        - a plot.

        EXAMPLES::

            sage: from sage.geometry.toric_plotter import ToricPlotter
            sage: tp = ToricPlotter(dict(), 2, [(3,4)])
            sage: print tp.plot_generators()
            Graphics object consisting of 1 graphics primitive
        """
        generators = self.generators
        result = Graphics()
        if not generators or not self.show_generators:
            return result
        colors = color_list(self.generator_color, len(generators))
        d = self.dimension
        extra_options = self.extra_options
        origin = self.origin
        thickness = self.generator_thickness
        zorder = self.generator_zorder
        for generator, ray, color in zip(generators, self.rays, colors):
            if ray.norm() < generator.norm():
                result += line([origin, ray], color=color, thickness=thickness, zorder=zorder, **extra_options)
            else:
                # This should not be the case, but as of 4.6 plotting
                # functions are inconsistent and arrows behave very
                # different compared to lines.
                if d <= 2:
                    result += arrow(
                        origin,
                        generator,
                        color=color,
                        width=thickness,
                        arrowsize=thickness + 1,
                        zorder=zorder,
                        **extra_options
                    )
                else:
                    result += line(
                        [origin, generator],
                        arrow_head=True,
                        color=color,
                        thickness=thickness,
                        zorder=zorder,
                        **extra_options
                    )
        return result
示例#2
0
文件: plot.py 项目: sageb0t/testsage
    def render_outline_2d(self, **kwds):
        """
        Return the outline (edges) of a polyhedron in 2d.

        EXAMPLES::

            sage: penta = polytopes.regular_polygon(5)
            sage: outline = penta.projection().render_outline_2d()
            sage: outline._objects[0]
            Line defined by 2 points
        """
        wireframe = [];
        for l in self.lines:
            l_coords = self.coordinates_of(l)
            wireframe.append( line2d(l_coords, **kwds) )
        for a in self.arrows:
            a_coords = self.coordinates_of(a)
            wireframe.append( arrow(a_coords[0], a_coords[1], **kwds) )
        return sum(wireframe)
示例#3
0
文件: graph_plot.py 项目: dagss/sage
    def set_edges(self, **edge_options):
        """
        Sets the edge (or arrow) plotting parameters for the GraphPlot object.  This 
        function is called by the constructor but can also be called to make updates to
        the vertex options of an existing GraphPlot object.  Note that the changes are 
        cumulative.
        
        EXAMPLES::

            sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
            sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_edges(edge_style='solid')
            sage: GP.plot()
            sage: GP.set_edges(edge_color='black')
            sage: GP.plot()
            
            sage: d = DiGraph({}, loops=True, multiedges=True, sparse=True)
            sage: d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_edges(edge_style='solid')
            sage: GP.plot()
            sage: GP.set_edges(edge_color='black')
            sage: GP.plot()

        TESTS::
        
            sage: G = Graph("Fooba")
            sage: G.show(edge_colors={'red':[(3,6),(2,5)]})

        Verify that default edge labels are pretty close to being between the vertices
        in some cases where they weren't due to truncating division (trac #10124)::

            sage: test_graphs = graphs.FruchtGraph(), graphs.BullGraph()
            sage: tol = 0.001
            sage: for G in test_graphs:
            ...       E=G.edges()
            ...       for e0, e1, elab in E:
            ...           G.set_edge_label(e0, e1, '%d %d' % (e0, e1))
            ...       gp = G.graphplot(save_pos=True,edge_labels=True)
            ...       vx = gp._plot_components['vertices'][0].xdata
            ...       vy = gp._plot_components['vertices'][0].ydata
            ...       for elab in gp._plot_components['edge_labels']:
            ...           textobj = elab[0]
            ...           x, y, s = textobj.x, textobj.y, textobj.string
            ...           v0, v1 = map(int, s.split())
            ...           vn = vector(((x-(vx[v0]+vx[v1])/2.),y-(vy[v0]+vy[v1])/2.)).norm()
            ...           assert vn < tol


        """
        for arg in edge_options:
            self._options[arg] = edge_options[arg]
        if 'edge_colors' in edge_options: self._options['color_by_label'] = False
        
        # Handle base edge options: thickness, linestyle
        eoptions={}
        if 'edge_style' in self._options:
            eoptions['linestyle'] = self._options['edge_style']
        if 'thickness' in self._options:
            eoptions['thickness'] = self._options['thickness']
            
        # Set labels param to add labels on the fly
        labels = False
        if self._options['edge_labels']:
            labels = True
            self._plot_components['edge_labels'] = []

        # Make dict collection of all edges (keep label and edge color)           
        edges_to_draw = {}
        if self._options['color_by_label'] or isinstance(self._options['edge_colors'], dict):
            if self._options['color_by_label']: edge_colors = self._graph._color_by_label()
            else: edge_colors = self._options['edge_colors']
            for color in edge_colors:
                for edge in edge_colors[color]:
                    key = tuple(sorted([edge[0],edge[1]]))
                    if key == (edge[0],edge[1]): head = 1
                    else: head = 0 
                    
                    if len(edge) < 3:
                        label = self._graph.edge_label(edge[0],edge[1])
                        if isinstance(label, list):
                            if key in edges_to_draw:
                                edges_to_draw[key].append((label[-1], color, head))
                            else:
                                edges_to_draw[key] = [(label[-1], color, head)]
                            for i in range(len(label)-1):
                                edges_to_draw[key].append((label[-1], color, head))
                    else:
                        label = edge[2]
                        
                    if key in edges_to_draw:
                        edges_to_draw[key].append((label, color, head))
                    else:
                        edges_to_draw[key] = [(label, color, head)]
            # add unspecified edges in (default color black)
            for edge in self._graph.edge_iterator():
                key = tuple(sorted([edge[0],edge[1]]))
                label = edge[2]
                specified = False
                if key in edges_to_draw:
                    for old_label, old_color, old_head in edges_to_draw[key]:
                        if label == old_label:
                            specified = True
                            break
                if not specified:
                    if key == (edge[0],edge[1]): head = 1
                    else: head = 0 
                    edges_to_draw[key] = [(label, 'black', head)]
        else:
            for edge in self._graph.edges(sort=True):
                key = tuple(sorted([edge[0],edge[1]]))
                if key == (edge[0],edge[1]): head = 1
                else: head = 0 
                if key in edges_to_draw:
                    edges_to_draw[key].append((edge[2], self._options['edge_color'], head))
                else:
                    edges_to_draw[key] = [(edge[2], self._options['edge_color'], head)]
                
        if edges_to_draw:
            self._plot_components['edges'] = []
        else:
            return
                        
        # Check for multi-edges or loops
        if self._arcs or self._loops:
            tmp = edges_to_draw.copy()
            dist = self._options['dist']*2.
            loop_size = self._options['loop_size']
            max_dist = self._options['max_dist']
            from sage.functions.all import sqrt
            for (a,b) in tmp:
                if a == b:
                    # Loops 
                    distance = dist
                    local_labels = edges_to_draw.pop((a,b))
                    if len(local_labels)*dist > max_dist:
                        distance = float(max_dist)/len(local_labels)
                    curr_loop_size = loop_size
                    for i in range(len(local_labels)):
                        self._plot_components['edges'].append(circle((self._pos[a][0],self._pos[a][1]-curr_loop_size), curr_loop_size, rgbcolor=local_labels[i][1], **eoptions))
                        if labels:
                            self._plot_components['edge_labels'].append(text(local_labels[i][0], (self._pos[a][0], self._pos[a][1]-2*curr_loop_size)))
                        curr_loop_size += distance/4
                elif len(edges_to_draw[(a,b)]) > 1:
                    # Multi-edge
                    local_labels = edges_to_draw.pop((a,b))
                    
                    # Compute perpendicular bisector
                    p1 = self._pos[a]
                    p2 = self._pos[b]
                    M = ((p1[0]+p2[0])/2., (p1[1]+p2[1])/2.) # midpoint
                    if not p1[1] == p2[1]:
                        S = float(p1[0]-p2[0])/(p2[1]-p1[1]) # perp slope
                        y = lambda x : S*x-S*M[0]+M[1] # perp bisector line
                        
                        # f,g are functions of distance d to determine x values 
                        # on line y at d from point M
                        f = lambda d : sqrt(d**2/(1.+S**2)) + M[0]
                        g = lambda d : -sqrt(d**2/(1.+S**2)) + M[0]
                        
                        odd_x = f
                        even_x = g
                        if p1[0] == p2[0]:
                            odd_y = lambda d : M[1]
                            even_y = odd_y
                        else:
                            odd_y = lambda x : y(f(x))
                            even_y = lambda x : y(g(x))
                    else:
                        odd_x = lambda d : M[0]
                        even_x = odd_x
                        odd_y = lambda d : M[1] + d
                        even_y = lambda d : M[1] - d
                    
                    # We now have the control points for each bezier curve
                    # in terms of distance parameter d.
                    # Also note that the label for each edge should be drawn at d/2.
                    # (This is because we're using the perp bisectors).
                    distance = dist
                    if len(local_labels)*dist > max_dist:
                        distance = float(max_dist)/len(local_labels)
                    for i in range(len(local_labels)/2):
                        k = (i+1.0)*distance
                        if self._arcdigraph:
                            odd_start = self._polar_hack_for_multidigraph(p1, [odd_x(k),odd_y(k)], self._vertex_radius)[0]
                            odd_end = self._polar_hack_for_multidigraph([odd_x(k),odd_y(k)], p2, self._vertex_radius)[1]
                            even_start = self._polar_hack_for_multidigraph(p1, [even_x(k),even_y(k)], self._vertex_radius)[0]
                            even_end = self._polar_hack_for_multidigraph([even_x(k),even_y(k)], p2, self._vertex_radius)[1]
                            self._plot_components['edges'].append(arrow(path=[[odd_start,[odd_x(k),odd_y(k)],odd_end]], head=local_labels[2*i][2], zorder=1, rgbcolor=local_labels[2*i][1], **eoptions))
                            self._plot_components['edges'].append(arrow(path=[[even_start,[even_x(k),even_y(k)],even_end]], head=local_labels[2*i+1][2], zorder=1, rgbcolor=local_labels[2*i+1][1], **eoptions))
                        else:
                            self._plot_components['edges'].append(bezier_path([[p1,[odd_x(k),odd_y(k)],p2]],zorder=1, rgbcolor=local_labels[2*i][1], **eoptions))
                            self._plot_components['edges'].append(bezier_path([[p1,[even_x(k),even_y(k)],p2]],zorder=1, rgbcolor=local_labels[2*i+1][1], **eoptions))
                        if labels:
                            j = k/2.0
                            self._plot_components['edge_labels'].append(text(local_labels[2*i][0],[odd_x(j),odd_y(j)]))
                            self._plot_components['edge_labels'].append(text(local_labels[2*i+1][0],[even_x(j),even_y(j)]))
                    if len(local_labels)%2 == 1:
                        edges_to_draw[(a,b)] = [local_labels[-1]] # draw line for last odd    
        
        dir = self._graph.is_directed()                                
        for (a,b) in edges_to_draw:
            if self._arcdigraph:
                C,D = self._polar_hack_for_multidigraph(self._pos[a], self._pos[b], self._vertex_radius)
                self._plot_components['edges'].append(arrow(C,D, rgbcolor=edges_to_draw[(a,b)][0][1], head=edges_to_draw[(a,b)][0][2], **eoptions))
                if labels:
                    self._plot_components['edge_labels'].append(text(str(edges_to_draw[(a,b)][0][0]),[(C[0]+D[0])/2., (C[1]+D[1])/2.]))
            elif dir:
                self._plot_components['edges'].append(arrow(self._pos[a],self._pos[b], rgbcolor=edges_to_draw[(a,b)][0][1], arrowshorten=self._arrowshorten, head=edges_to_draw[(a,b)][0][2], **eoptions))
            else:
                self._plot_components['edges'].append(line([self._pos[a],self._pos[b]], rgbcolor=edges_to_draw[(a,b)][0][1], **eoptions))
            if labels and not self._arcdigraph:
                self._plot_components['edge_labels'].append(text(str(edges_to_draw[(a,b)][0][0]),[(self._pos[a][0]+self._pos[b][0])/2., (self._pos[a][1]+self._pos[b][1])/2.]))
示例#4
0
    def set_edges(self, **edge_options):
        """
        Sets the edge (or arrow) plotting parameters for the ``GraphPlot`` object.

        This function is called by the constructor but can also be called to make
        updates to the vertex options of an existing ``GraphPlot`` object.  Note
        that the changes are cumulative.

        EXAMPLES::

            sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
            sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_edges(edge_style='solid')
            sage: GP.plot()
            sage: GP.set_edges(edge_color='black')
            sage: GP.plot()

            sage: d = DiGraph({}, loops=True, multiedges=True, sparse=True)
            sage: d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_edges(edge_style='solid')
            sage: GP.plot()
            sage: GP.set_edges(edge_color='black')
            sage: GP.plot()

        TESTS::

            sage: G = Graph("Fooba")
            sage: G.show(edge_colors={'red':[(3,6),(2,5)]})

        Verify that default edge labels are pretty close to being between the vertices
        in some cases where they weren't due to truncating division (:trac:`10124`)::

            sage: test_graphs = graphs.FruchtGraph(), graphs.BullGraph()
            sage: tol = 0.001
            sage: for G in test_graphs:
            ...       E=G.edges()
            ...       for e0, e1, elab in E:
            ...           G.set_edge_label(e0, e1, '%d %d' % (e0, e1))
            ...       gp = G.graphplot(save_pos=True,edge_labels=True)
            ...       vx = gp._plot_components['vertices'][0].xdata
            ...       vy = gp._plot_components['vertices'][0].ydata
            ...       for elab in gp._plot_components['edge_labels']:
            ...           textobj = elab[0]
            ...           x, y, s = textobj.x, textobj.y, textobj.string
            ...           v0, v1 = map(int, s.split())
            ...           vn = vector(((x-(vx[v0]+vx[v1])/2.),y-(vy[v0]+vy[v1])/2.)).norm()
            ...           assert vn < tol

        """
        for arg in edge_options:
            self._options[arg] = edge_options[arg]
        if 'edge_colors' in edge_options:
            self._options['color_by_label'] = False

        # Handle base edge options: thickness, linestyle
        eoptions = {}
        if 'edge_style' in self._options:
            from sage.plot.misc import get_matplotlib_linestyle
            eoptions['linestyle'] = get_matplotlib_linestyle(
                self._options['edge_style'], return_type='long')
        if 'thickness' in self._options:
            eoptions['thickness'] = self._options['thickness']

        # Set labels param to add labels on the fly
        labels = False
        if self._options['edge_labels']:
            labels = True
            self._plot_components['edge_labels'] = []

        # Make dict collection of all edges (keep label and edge color)
        edges_to_draw = {}
        if self._options['color_by_label'] or isinstance(
                self._options['edge_colors'], dict):
            if self._options['color_by_label']:
                edge_colors = self._graph._color_by_label(
                    format=self._options['color_by_label'])
            else:
                edge_colors = self._options['edge_colors']
            for color in edge_colors:
                for edge in edge_colors[color]:
                    key = tuple(sorted([edge[0], edge[1]]))
                    if key == (edge[0], edge[1]): head = 1
                    else: head = 0

                    if len(edge) < 3:
                        label = self._graph.edge_label(edge[0], edge[1])
                        if isinstance(label, list):
                            if key in edges_to_draw:
                                edges_to_draw[key].append(
                                    (label[-1], color, head))
                            else:
                                edges_to_draw[key] = [(label[-1], color, head)]
                            for i in range(len(label) - 1):
                                edges_to_draw[key].append(
                                    (label[-1], color, head))
                    else:
                        label = edge[2]

                    if key in edges_to_draw:
                        edges_to_draw[key].append((label, color, head))
                    else:
                        edges_to_draw[key] = [(label, color, head)]
            # add unspecified edges in (default color black)
            for edge in self._graph.edge_iterator():
                key = tuple(sorted([edge[0], edge[1]]))
                label = edge[2]
                specified = False
                if key in edges_to_draw:
                    for old_label, old_color, old_head in edges_to_draw[key]:
                        if label == old_label:
                            specified = True
                            break
                if not specified:
                    if key == (edge[0], edge[1]): head = 1
                    else: head = 0
                    edges_to_draw[key] = [(label, 'black', head)]
        else:
            for edge in self._graph.edges(sort=True):
                key = tuple(sorted([edge[0], edge[1]]))
                if key == (edge[0], edge[1]): head = 1
                else: head = 0
                if key in edges_to_draw:
                    edges_to_draw[key].append(
                        (edge[2], self._options['edge_color'], head))
                else:
                    edges_to_draw[key] = [(edge[2],
                                           self._options['edge_color'], head)]

        if edges_to_draw:
            self._plot_components['edges'] = []
        else:
            return

        # Check for multi-edges or loops
        if self._arcs or self._loops:
            tmp = edges_to_draw.copy()
            dist = self._options['dist'] * 2.
            loop_size = self._options['loop_size']
            max_dist = self._options['max_dist']
            from sage.functions.all import sqrt
            for (a, b) in tmp:
                if a == b:
                    # Loops
                    distance = dist
                    local_labels = edges_to_draw.pop((a, b))
                    if len(local_labels) * dist > max_dist:
                        distance = float(max_dist) / len(local_labels)
                    curr_loop_size = loop_size
                    for i in range(len(local_labels)):
                        self._plot_components['edges'].append(
                            circle((self._pos[a][0],
                                    self._pos[a][1] - curr_loop_size),
                                   curr_loop_size,
                                   rgbcolor=local_labels[i][1],
                                   **eoptions))
                        if labels:
                            self._plot_components['edge_labels'].append(
                                text(local_labels[i][0],
                                     (self._pos[a][0],
                                      self._pos[a][1] - 2 * curr_loop_size)))
                        curr_loop_size += distance / 4
                elif len(edges_to_draw[(a, b)]) > 1:
                    # Multi-edge
                    local_labels = edges_to_draw.pop((a, b))

                    # Compute perpendicular bisector
                    p1 = self._pos[a]
                    p2 = self._pos[b]
                    M = (
                        (p1[0] + p2[0]) / 2., (p1[1] + p2[1]) / 2.)  # midpoint
                    if not p1[1] == p2[1]:
                        S = float(p1[0] - p2[0]) / (p2[1] - p1[1]
                                                    )  # perp slope
                        y = lambda x: S * x - S * M[0] + M[
                            1]  # perp bisector line

                        # f,g are functions of distance d to determine x values
                        # on line y at d from point M
                        f = lambda d: sqrt(d**2 / (1. + S**2)) + M[0]
                        g = lambda d: -sqrt(d**2 / (1. + S**2)) + M[0]

                        odd_x = f
                        even_x = g
                        if p1[0] == p2[0]:
                            odd_y = lambda d: M[1]
                            even_y = odd_y
                        else:
                            odd_y = lambda x: y(f(x))
                            even_y = lambda x: y(g(x))
                    else:
                        odd_x = lambda d: M[0]
                        even_x = odd_x
                        odd_y = lambda d: M[1] + d
                        even_y = lambda d: M[1] - d

                    # We now have the control points for each bezier curve
                    # in terms of distance parameter d.
                    # Also note that the label for each edge should be drawn at d/2.
                    # (This is because we're using the perp bisectors).
                    distance = dist
                    if len(local_labels) * dist > max_dist:
                        distance = float(max_dist) / len(local_labels)
                    for i in range(len(local_labels) / 2):
                        k = (i + 1.0) * distance
                        if self._arcdigraph:
                            odd_start = self._polar_hack_for_multidigraph(
                                p1, [odd_x(k), odd_y(k)],
                                self._vertex_radius)[0]
                            odd_end = self._polar_hack_for_multidigraph(
                                [odd_x(k), odd_y(k)], p2,
                                self._vertex_radius)[1]
                            even_start = self._polar_hack_for_multidigraph(
                                p1, [even_x(k), even_y(k)],
                                self._vertex_radius)[0]
                            even_end = self._polar_hack_for_multidigraph(
                                [even_x(k), even_y(k)], p2,
                                self._vertex_radius)[1]
                            self._plot_components['edges'].append(
                                arrow(path=[[
                                    odd_start, [odd_x(k), odd_y(k)], odd_end
                                ]],
                                      head=local_labels[2 * i][2],
                                      zorder=1,
                                      rgbcolor=local_labels[2 * i][1],
                                      **eoptions))
                            self._plot_components['edges'].append(
                                arrow(path=[[
                                    even_start, [even_x(k),
                                                 even_y(k)], even_end
                                ]],
                                      head=local_labels[2 * i + 1][2],
                                      zorder=1,
                                      rgbcolor=local_labels[2 * i + 1][1],
                                      **eoptions))
                        else:
                            self._plot_components['edges'].append(
                                bezier_path(
                                    [[p1, [odd_x(k), odd_y(k)], p2]],
                                    zorder=1,
                                    rgbcolor=local_labels[2 * i][1],
                                    **eoptions))
                            self._plot_components['edges'].append(
                                bezier_path(
                                    [[p1, [even_x(k), even_y(k)], p2]],
                                    zorder=1,
                                    rgbcolor=local_labels[2 * i + 1][1],
                                    **eoptions))
                        if labels:
                            j = k / 2.0
                            self._plot_components['edge_labels'].append(
                                text(local_labels[2 * i][0],
                                     [odd_x(j), odd_y(j)]))
                            self._plot_components['edge_labels'].append(
                                text(local_labels[2 * i + 1][0],
                                     [even_x(j), even_y(j)]))
                    if len(local_labels) % 2 == 1:
                        edges_to_draw[(a, b)] = [local_labels[-1]
                                                 ]  # draw line for last odd

        dir = self._graph.is_directed()
        for (a, b) in edges_to_draw:
            if self._arcdigraph:
                C, D = self._polar_hack_for_multidigraph(
                    self._pos[a], self._pos[b], self._vertex_radius)
                self._plot_components['edges'].append(
                    arrow(C,
                          D,
                          rgbcolor=edges_to_draw[(a, b)][0][1],
                          head=edges_to_draw[(a, b)][0][2],
                          **eoptions))
                if labels:
                    self._plot_components['edge_labels'].append(
                        text(str(edges_to_draw[(a, b)][0][0]),
                             [(C[0] + D[0]) / 2., (C[1] + D[1]) / 2.]))
            elif dir:
                self._plot_components['edges'].append(
                    arrow(self._pos[a],
                          self._pos[b],
                          rgbcolor=edges_to_draw[(a, b)][0][1],
                          arrowshorten=self._arrowshorten,
                          head=edges_to_draw[(a, b)][0][2],
                          **eoptions))
            else:
                self._plot_components['edges'].append(
                    line([self._pos[a], self._pos[b]],
                         rgbcolor=edges_to_draw[(a, b)][0][1],
                         **eoptions))
            if labels and not self._arcdigraph:
                self._plot_components['edge_labels'].append(
                    text(str(edges_to_draw[(a, b)][0][0]),
                         [(self._pos[a][0] + self._pos[b][0]) / 2.,
                          (self._pos[a][1] + self._pos[b][1]) / 2.]))
示例#5
0
    def plot(self, *args, **kwds):
        r"""
        Overrides Graph's plot function, to illustrate the bundle nature.

        EXAMPLE::

            sage: P = graphs.PetersenGraph()
            sage: partition = [range(5), range(5,10)]
            sage: B = GraphBundle(P, partition)
            sage: #B.plot()

          Test disabled due to bug in GraphBundle.__init__().  See trac #8329.

        """
        if 'pos' not in kwds.keys():
            kwds['pos'] = None
        if kwds['pos'] is None:
            import sage.graphs.generic_graph_pyx as generic_graph_pyx
            if 'iterations' not in kwds.keys():
                kwds['iterations'] = 50
            iters = kwds['iterations']
            total_pos = generic_graph_pyx.spring_layout_fast(self,
                                                             iterations=iters)
            base_pos = generic_graph_pyx.spring_layout_fast(self.base,
                                                            iterations=iters)
            for v in base_pos.iterkeys():
                for v_tilde in self.fiber[v]:
                    total_pos[v_tilde][0] = base_pos[v][0]
            tot_x = [p[0] for p in total_pos.values()]
            tot_y = [p[1] for p in total_pos.values()]
            bas_x = [p[0] for p in base_pos.values()]
            bas_y = [p[1] for p in base_pos.values()]
            tot_x_min = min(tot_x)
            tot_x_max = max(tot_x)
            tot_y_min = min(tot_y)
            tot_y_max = max(tot_y)
            bas_x_min = min(bas_x)
            bas_x_max = max(bas_x)
            bas_y_min = min(bas_y)
            bas_y_max = max(bas_y)
            if tot_x_max == tot_x_min and tot_y_max == tot_y_min:
                tot_y_max += 1
                tot_y_min -= 1
            elif tot_y_max == tot_y_min:
                delta = (tot_x_max - tot_x_min) / 2.0
                tot_y_max += delta
                tot_y_min -= delta
            if bas_x_max == bas_x_min and bas_y_max == bas_y_min:
                bas_y_max += 1
                bas_y_min -= 1
            elif bas_y_max == bas_y_min:
                delta = (bas_x_max - bas_x_min) / 2.0
                bas_y_max += delta
                bas_y_min -= delta
            y_diff = (bas_y_max - tot_y_min) + 2 * (bas_y_max - bas_y_min)
            pos = {}
            for v in self:
                pos[('t', v)] = [total_pos[v][0], total_pos[v][1] + y_diff]
            for v in self.base:
                pos[('b', v)] = base_pos[v]
            from copy import copy
            G = copy(self)
            rd = {}
            for v in G:
                rd[v] = ('t', v)
            G.relabel(rd)
            B = copy(self.base)
            rd = {}
            for v in B:
                rd[v] = ('b', v)
            B.relabel(rd)
            E = G.disjoint_union(B)
            kwds['pos'] = pos
            from sage.plot.all import arrow
            G = Graph.plot(E, *args, **kwds)
            G += arrow(((tot_x_max + tot_x_min) / 2.0, tot_y_min + y_diff),
                       ((tot_x_max + tot_x_min) / 2.0, bas_y_max),
                       axes=False)
            G.axes(False)
            return G
        else:
            return G.plot(self, *args, **kwds)
示例#6
0
    def plot(self, *args, **kwds):
        r"""
        Overrides Graph's plot function, to illustrate the bundle nature.

        EXAMPLE::

            sage: P = graphs.PetersenGraph()
            sage: partition = [range(5), range(5,10)]
            sage: B = GraphBundle(P, partition)
            sage: #B.plot()

          Test disabled due to bug in GraphBundle.__init__().  See trac #8329.

        """
        if "pos" not in kwds.keys():
            kwds["pos"] = None
        if kwds["pos"] is None:
            import sage.graphs.generic_graph_pyx as generic_graph_pyx

            if "iterations" not in kwds.keys():
                kwds["iterations"] = 50
            iters = kwds["iterations"]
            total_pos = generic_graph_pyx.spring_layout_fast(self, iterations=iters)
            base_pos = generic_graph_pyx.spring_layout_fast(self.base, iterations=iters)
            for v in base_pos.iterkeys():
                for v_tilde in self.fiber[v]:
                    total_pos[v_tilde][0] = base_pos[v][0]
            tot_x = [p[0] for p in total_pos.values()]
            tot_y = [p[1] for p in total_pos.values()]
            bas_x = [p[0] for p in base_pos.values()]
            bas_y = [p[1] for p in base_pos.values()]
            tot_x_min = min(tot_x)
            tot_x_max = max(tot_x)
            tot_y_min = min(tot_y)
            tot_y_max = max(tot_y)
            bas_x_min = min(bas_x)
            bas_x_max = max(bas_x)
            bas_y_min = min(bas_y)
            bas_y_max = max(bas_y)
            if tot_x_max == tot_x_min and tot_y_max == tot_y_min:
                tot_y_max += 1
                tot_y_min -= 1
            elif tot_y_max == tot_y_min:
                delta = (tot_x_max - tot_x_min) / 2.0
                tot_y_max += delta
                tot_y_min -= delta
            if bas_x_max == bas_x_min and bas_y_max == bas_y_min:
                bas_y_max += 1
                bas_y_min -= 1
            elif bas_y_max == bas_y_min:
                delta = (bas_x_max - bas_x_min) / 2.0
                bas_y_max += delta
                bas_y_min -= delta
            y_diff = (bas_y_max - tot_y_min) + 2 * (bas_y_max - bas_y_min)
            pos = {}
            for v in self:
                pos[("t", v)] = [total_pos[v][0], total_pos[v][1] + y_diff]
            for v in self.base:
                pos[("b", v)] = base_pos[v]
            from copy import copy

            G = copy(self)
            rd = {}
            for v in G:
                rd[v] = ("t", v)
            G.relabel(rd)
            B = copy(self.base)
            rd = {}
            for v in B:
                rd[v] = ("b", v)
            B.relabel(rd)
            E = G.disjoint_union(B)
            kwds["pos"] = pos
            from sage.plot.all import arrow

            G = Graph.plot(E, *args, **kwds)
            G += arrow(
                ((tot_x_max + tot_x_min) / 2.0, tot_y_min + y_diff),
                ((tot_x_max + tot_x_min) / 2.0, bas_y_max),
                axes=False,
            )
            G.axes(False)
            return G
        else:
            return G.plot(self, *args, **kwds)