示例#1
0
    def plot_histogram(self, clr=(0, 0, 1), eps=0.4):
        """
        Plots the histogram plot of the sequence, which is assumed to be real
        or from a finite field, with a real indexing set I coercible into RR.
        Options are clr, which is an RGB value, and eps, which is the spacing between the 
        bars.

        EXAMPLES:
            sage: J = range(3)
            sage: A = [ZZ(i^2)+1 for i in J]
            sage: s = IndexedSequence(A,J)
            sage: P = s.plot_histogram()

        Now type show(P) to view this in a browser.
        """
        #from sage.plot.misc import text
        F = self.base_ring()  ## elements must be coercible into RR
        I = self.index_object()
        N = len(I)
        S = self.list()
        P = [
            polygon([[RR(I[i]) - eps, 0], [
                RR(I[i]) - eps, RR(S[i])
            ], [RR(I[i]) + eps, RR(S[i])], [RR(I[i]) + eps, 0], [RR(I[i]), 0]],
                    rgbcolor=clr) for i in range(N)
        ]
        T = [
            text(str(I[i]), (RR(I[i]), -0.8), fontsize=15, rgbcolor=(1, 0, 0))
            for i in range(N)
        ]
        return sum(P) + sum(T)
示例#2
0
    def plot_known(self):
        r"""
        TESTS::

            sage: from ore_algebra import *
            sage: from ore_algebra.analytic.function import DFiniteFunction
            sage: DiffOps, x, Dx = DifferentialOperators()

            sage: f = DFiniteFunction((x^2 + 1)*Dx^2 + 2*x*Dx, [0, 1])
            sage: f(-10, 100) # long time
            [-1.4711276743037345918528755717...]
            sage: f.approx(5, post_transform=Dx) # long time
            [0.038461538461538...]
            sage: f.plot_known() # long time
            Graphics object consisting of ... graphics primitives
        """
        g = plot.Graphics()
        for center, polys in self._polys.iteritems():
            center, rad = self._disk(Point(center, self.dop))
            xrange = (center - rad).mid(), (center + rad).mid()
            for i, a in enumerate(polys):
                # color palette copied from sage.plot.plot.plot
                color = plot.Color((0.66666 + i * 0.61803) % 1,
                                   1,
                                   0.4,
                                   space='hsl')
                Balls = a.pol.base_ring()
                g += plot.plot(lambda x: a.pol(Balls(x)).mid(),
                               xrange,
                               color=color)
                g += plot.text(str(a.prec), (center, a.pol(center).mid()),
                               color=color)
        for point, ini in self._inivecs.iteritems():
            g += plot.point2d((point, 0), size=50)
        return g
示例#3
0
    def plot_histogram(self, clr=(0,0,1), eps = 0.4):
        r"""
        Plot the histogram plot of the sequence.

        The sequence is assumed to be real or from a finite field,
        with a real indexing set ``I`` coercible into `\RR`.

        Options are ``clr``, which is an RGB value, and ``eps``, which
        is the spacing between the bars.

        EXAMPLES::

            sage: J = range(3)
            sage: A = [ZZ(i^2)+1 for i in J]
            sage: s = IndexedSequence(A,J)
            sage: P = s.plot_histogram()
            sage: show(P) # Not tested
        """
        # elements must be coercible into RR
        I = self.index_object()
        N = len(I)
        S = self.list()
        P = [polygon([[RR(I[i])-eps,0],[RR(I[i])-eps,RR(S[i])],[RR(I[i])+eps,RR(S[i])],[RR(I[i])+eps,0],[RR(I[i]),0]], rgbcolor=clr) for i in range(N)]
        T = [text(str(I[i]),(RR(I[i]),-0.8),fontsize=15,rgbcolor=(1,0,0)) for i in range(N)]
        return sum(P) + sum(T)
示例#4
0
    def plot_histogram(self, clr=(0,0,1), eps = 0.4):
        r"""
        Plot the histogram plot of the sequence.

        The sequence is assumed to be real or from a finite field,
        with a real indexing set ``I`` coercible into `\RR`.

        Options are ``clr``, which is an RGB value, and ``eps``, which
        is the spacing between the bars.

        EXAMPLES::

            sage: J = range(3)
            sage: A = [ZZ(i^2)+1 for i in J]
            sage: s = IndexedSequence(A,J)
            sage: P = s.plot_histogram()
            sage: show(P) # Not tested
        """
        # elements must be coercible into RR
        I = self.index_object()
        N = len(I)
        S = self.list()
        P = [polygon([[RR(I[i])-eps,0],[RR(I[i])-eps,RR(S[i])],[RR(I[i])+eps,RR(S[i])],[RR(I[i])+eps,0],[RR(I[i]),0]], rgbcolor=clr) for i in range(N)]
        T = [text(str(I[i]),(RR(I[i]),-0.8),fontsize=15,rgbcolor=(1,0,0)) for i in range(N)]
        return sum(P) + sum(T)
    def plot_completely_periodic(self):
        from sage.plot.all import polygon2d, Graphics, point2d, text
        O = self.orbit
        G = []
        u = self.u  # direction (that we put horizontal)
        m = matrix(2, [u[1], -u[0], u[1], u[0]])
        indices = {}
        xmin = xmax = ymin = ymax = 0
        for comp in self.decomposition.components():
            H = Graphics()
            x = O.V2._isomorphic_vector_space.zero()

            pts = [x]
            below = True
            for p in comp.perimeter():
                sc = p.saddleConnection()
                y = x + m * O.V2._isomorphic_vector_space(
                    O.V2(p.saddleConnection().vector()))

                if p.vertical():
                    if sc in indices:
                        i = indices[sc]
                    else:
                        i = len(indices) // 2
                        indices[sc] = i
                        indices[-sc] = i
                    if below:
                        H += text(str(i), (x + y) / 2, color='black')
                x = y
                xmin = min(xmin, x[0])
                xmax = max(xmax, x[0])
                ymin = min(ymin, x[1])
                ymax = max(ymax, x[1])
                pts.append(x)
            H += polygon2d(pts, color='blue', alpha=0.3)
            H += point2d(pts, color='red', pointsize=20)
            G.append(H)
        aspect_ratio = float(xmax - xmin) / float(ymax - ymin)
        for H in G:
            H.set_axes_range(xmin, xmax, ymin, ymax)
            H.axes(False)
            H.set_aspect_ratio(aspect_ratio)
        return G
示例#6
0
    def plot_labels(self, labels, positions):
        r"""
        Plot ``labels`` at specified ``positions``.

        INPUT:

        - ``labels`` -- a string or a list of strings;

        - ``positions`` -- a list of points.

        OUTPUT:

        - a plot.

        EXAMPLES::

            sage: from sage.geometry.toric_plotter import ToricPlotter
            sage: tp = ToricPlotter(dict(), 2)
            sage: print tp.plot_labels("u", [(1.5,0)])
            Graphics object consisting of 1 graphics primitive
        """
        result = Graphics()
        color = self.label_color
        extra_options = self.extra_options
        zorder = self.label_zorder
        font_size = self.font_size
        twod = self.dimension <= 2
        labels = label_list(labels, len(positions), twod)
        for label, position in zip(labels, positions):
            if label is None:
                continue
            if twod:
                result += text(label,
                               position,
                               color=color,
                               fontsize=font_size,
                               zorder=zorder,
                               **extra_options)
            else:
                result += text3d(label, position, color=color, **extra_options)
        return result
示例#7
0
    def plot_labels(self, labels, positions):
        r"""
        Plot ``labels`` at specified ``positions``.

        INPUT:

        - ``labels`` -- a string or a list of strings;

        - ``positions`` -- a list of points.

        OUTPUT:

        - a plot.

        EXAMPLES::

            sage: from sage.geometry.toric_plotter import ToricPlotter
            sage: tp = ToricPlotter(dict(), 2)
            sage: tp.plot_labels("u", [(1.5,0)])
            Graphics object consisting of 1 graphics primitive
        """
        result = Graphics()
        color = self.label_color
        extra_options = self.extra_options
        zorder = self.label_zorder
        font_size = self.font_size
        twod = self.dimension <= 2
        labels = label_list(labels, len(positions), twod)
        for label, position in zip(labels, positions):
            if label is None:
                continue
            if twod:
                result += text(label, position,
                               color=color, fontsize=font_size,
                               zorder=zorder, **extra_options)
            else:
                result += text3d(label, position, color=color, **extra_options)
        return result
示例#8
0
文件: dft.py 项目: pombredanne/sage-1
    def plot_histogram(self, clr=(0,0,1),eps = 0.4):
        """
        Plots the histogram plot of the sequence, which is assumed to be real
        or from a finite field, with a real indexing set I coercible into RR.
        Options are clr, which is an RGB value, and eps, which is the spacing between the 
        bars.

        EXAMPLES:
            sage: J = range(3)
            sage: A = [ZZ(i^2)+1 for i in J]
            sage: s = IndexedSequence(A,J)
            sage: P = s.plot_histogram()

        Now type show(P) to view this in a browser.
        """
        #from sage.plot.misc import text
        F = self.base_ring()   ## elements must be coercible into RR
        I = self.index_object()
        N = len(I)
        S = self.list()
        P = [polygon([[RR(I[i])-eps,0],[RR(I[i])-eps,RR(S[i])],[RR(I[i])+eps,RR(S[i])],[RR(I[i])+eps,0],[RR(I[i]),0]], rgbcolor=clr) for i in range(N)]
        T = [text(str(I[i]),(RR(I[i]),-0.8),fontsize=15,rgbcolor=(1,0,0)) for i in range(N)]
        return sum(P)+sum(T)
示例#9
0
def geomrep(M1, B1=None, lineorders1=None, pd=None, sp=False):
    """
    Return a sage graphics object containing geometric representation of
    matroid M1.

    INPUT:

    - ``M1`` -- A matroid.
    - ``B1`` -- (optional) A list of elements in ``M1.groundset()`` that
      correspond to a basis of ``M1`` and will be placed as vertices of the
      triangle in the geometric representation of ``M1``.
    - ``lineorders1`` -- (optional) A list of ordered lists of elements of
      ``M1.grondset()`` such that if a line in geometric representation is
      setwise same as any of these then points contained will be traversed in
      that order thus overriding internal order deciding heuristic.
    - ``pd`` - (optional) A dictionary mapping ground set elements to their
      (x,y) positions.
    - ``sp`` -- (optional) If True, a positioning dictionary and line orders
      will be placed in ``M._cached_info``.

    OUTPUT:

    A sage graphics object of type <class 'sage.plot.graphics.Graphics'> that
    corresponds to the geometric representation of the matroid.

    EXAMPLES::

        sage: from sage.matroids import matroids_plot_helpers
        sage: M=matroids.named_matroids.P7()
        sage: G=matroids_plot_helpers.geomrep(M)
        sage: G.show(xmin=-2, xmax=3, ymin=-2, ymax=3)
        sage: M=matroids.named_matroids.P7()
        sage: G=matroids_plot_helpers.geomrep(M,lineorders1=[['f','e','d']])
        sage: G.show(xmin=-2, xmax=3, ymin=-2, ymax=3)

    .. NOTE::

            This method does NOT do any checks.
    """
    G = Graphics()
    # create lists of loops and parallel elements and simplify given matroid
    [M, L, P] = slp(M1, pos_dict=pd, B=B1)
    if B1 is None:
        B1 = list(M.basis())
    M._cached_info = M1._cached_info

    if M.rank() == 0:
        limits = None
        loops = L
        looptext = ", ".join([str(l) for l in loops])
        rectx = -1
        recty = -1
        rectw = 0.5 + 0.4 * len(loops) + 0.5  # controlled based on len(loops)
        recth = 0.6
        G += polygon2d(
            [[rectx, recty], [rectx, recty + recth],
             [rectx + rectw, recty + recth], [rectx + rectw, recty]],
            color='black',
            fill=False,
            thickness=4)
        G += text(looptext, (rectx + 0.5, recty + 0.3),
                  color='black',
                  fontsize=13)
        G += point((rectx + 0.2, recty + 0.3),
                   color=Color('#BDBDBD'),
                   size=300,
                   zorder=2)
        G += text('Loop(s)',
                  (rectx + 0.5 + 0.4 * len(loops) + 0.1, recty + 0.3),
                  fontsize=13,
                  color='black')
        limits = tracklims(limits, [rectx, rectx + rectw],
                           [recty, recty + recth])
        G.axes(False)
        G.axes_range(xmin=limits[0] - 0.5,
                     xmax=limits[1] + 0.5,
                     ymin=limits[2] - 0.5,
                     ymax=limits[3] + 0.5)
        return G
    elif M.rank() == 1:
        if M._cached_info is not None and \
           'plot_positions' in M._cached_info.keys() and \
           M._cached_info['plot_positions'] is not None:
            pts = M._cached_info['plot_positions']
        else:
            pts = {}
            gnd = sorted(M.groundset())
        pts[gnd[0]] = (1, float(2) / 3)
        G += point((1, float(2) / 3),
                   size=300,
                   color=Color('#BDBDBD'),
                   zorder=2)
        pt = [1, float(2) / 3]
        if len(P) == 0:
            G += text(gnd[0], (float(pt[0]), float(pt[1])),
                      color='black',
                      fontsize=13)
        pts2 = pts
        # track limits [xmin,xmax,ymin,ymax]
        pl = [list(x) for x in pts2.values()]
        lims = tracklims([None, None, None, None], [pt[0] for pt in pl],
                         [pt[1] for pt in pl])
    elif M.rank() == 2:
        nB1 = list(set(list(M.groundset())) - set(B1))
        bline = []
        for j in nB1:
            if M.is_dependent([j, B1[0], B1[1]]):
                bline.append(j)
        interval = len(bline) + 1
        if M._cached_info is not None and \
           'plot_positions' in M._cached_info.keys() and \
           M._cached_info['plot_positions'] is not None:
            pts2 = M._cached_info['plot_positions']
        else:
            pts2 = {}
            pts2[B1[0]] = (0, 0)
            pts2[B1[1]] = (2, 0)
            lpt = list(pts2[B1[0]])
            rpt = list(pts2[B1[1]])
            for k in range(len(bline)):
                cc = (float(1) / interval) * (k + 1)
                pts2[bline[k]] = (cc * lpt[0] + (1 - cc) * rpt[0],
                                  cc * lpt[1] + (1 - cc) * rpt[1])
            if sp is True:
                M._cached_info['plot_positions'] = pts2
        # track limits [xmin,xmax,ymin,ymax]
        pl = [list(x) for x in pts2.values()]
        lims = tracklims([None, None, None, None], [pt[0] for pt in pl],
                         [pt[1] for pt in pl])
        bline.extend(B1)
        ptsx, ptsy, x_i, y_i = createline(pts2, bline, lineorders1)
        lims = tracklims(lims, x_i, y_i)
        G += line(zip(x_i, y_i), color='black', thickness=3, zorder=1)
        pels = [
            p for p in pts2.keys() if any([M1.rank([p, q]) == 1 for q in P])
        ]
        allpts = [list(pts2[i]) for i in M.groundset()]
        xpts = [float(k[0]) for k in allpts]
        ypts = [float(k[1]) for k in allpts]
        G += points(zip(xpts, ypts),
                    color=Color('#BDBDBD'),
                    size=300,
                    zorder=2)
        for i in pts2:
            if i not in pels:
                pt = list(pts2[i])
                G += text(i, (float(pt[0]), float(pt[1])),
                          color='black',
                          fontsize=13)
    else:
        if M._cached_info is None or \
           'plot_positions' not in M._cached_info.keys() or \
           M._cached_info['plot_positions'] is None:
            (pts, trilines, nontripts,
             curvedlines) = it(M1, B1, list(set(M.groundset()) - set(B1)),
                               list(set(L) | set(P)))
            pts2 = addnontripts([B1[0], B1[1], B1[2]], nontripts, pts)
            trilines.extend(curvedlines)
        else:
            pts2 = M._cached_info['plot_positions']
            trilines = [
                list(set(list(x)).difference(L | P)) for x in M1.flats(2)
                if len(list(x)) >= 3
            ]
        pl = [list(x) for x in pts2.values()]
        lims = tracklims([None, None, None, None], [pt[0] for pt in pl],
                         [pt[1] for pt in pl])
        j = 0
        for ll in trilines:
            if len(ll) >= 3:
                ptsx, ptsy, x_i, y_i = createline(pts2, ll, lineorders1)
                lims = tracklims(lims, x_i, y_i)
                G += line(zip(x_i, y_i), color='black', thickness=3, zorder=1)
        pels = [
            p for p in pts2.keys() if any([M1.rank([p, q]) == 1 for q in P])
        ]
        allpts = [list(pts2[i]) for i in M.groundset()]
        xpts = [float(k[0]) for k in allpts]
        ypts = [float(k[1]) for k in allpts]
        G += points(zip(xpts, ypts),
                    color=Color('#BDBDBD'),
                    size=300,
                    zorder=2)
        for i in pts2:
            if i not in pels:
                pt = list(pts2[i])
                G += text(i, (float(pt[0]), float(pt[1])),
                          color='black',
                          fontsize=13)
        if sp is True:
            M1._cached_info['plot_positions'] = pts2
            M1._cached_info['plot_lineorders'] = lineorders1
    # deal with loops and parallel elements
    G, lims = addlp(M1, M, L, P, pts2, G, lims)
    G.axes(False)
    G.axes_range(xmin=lims[0] - 0.5,
                 xmax=lims[1] + 0.5,
                 ymin=lims[2] - 0.5,
                 ymax=lims[3] + 0.5)
    return G
示例#10
0
    def plot_heap(self):
        r"""
        Display the Hasse diagram of the heap of ``self``.

        The Hasse diagram is rendered in the lattice `S \times \NN`, with
        every element `i` in the poset drawn as a point labelled by its label
        `s_i`. Every point is placed in the column for its label at a certain
        level. The levels start at 0 and the level k of an element `i` is the
        maximal number `k` such that the heap contains a chain `i_0\prec
        i_1\prec ... \prec i_k` where `i_k=i`. See [Ste1996]_ and [GX2020]_.

        OUTPUT: GraphicsObject

        EXAMPLES::

            sage: FC = CoxeterGroup(['B', 5]).fully_commutative_elements()
            sage: FC([3,2,4,3,1]).plot_heap()
            Graphics object consisting of 15 graphics primitives

        .. PLOT::
            :width: 400px

            FC = CoxeterGroup(['B', 5]).fully_commutative_elements()
            g = FC([3,2,4,3,1]).plot_heap()
            sphinx_plot(g)
        """
        import sage.plot.all as plot

        m = self.parent().coxeter_group().coxeter_matrix()
        letters = self.parent().coxeter_group().index_set()
        graphics = []

        h = self.heap()
        levels = h.level_sets()
        letters_at_level = [set(self[i] for i in level) for level in levels]

        for (level_zero_index, members) in enumerate(levels):
            level = level_zero_index + 1
            for i in members:
                x = self[i]

                # Draw the node
                graphics.append(
                    plot.circle((x, level),
                                0.1,
                                fill=True,
                                facecolor='white',
                                edgecolor='blue',
                                zorder=1))
                graphics.append(
                    plot.text(str(x), (x, level), color='blue', zorder=2))

                neighbors = {z for z in letters if m[x, z] >= 3}
                for other in neighbors:
                    highest_level = max((j + 1 for j in range(level_zero_index)
                                         if other in letters_at_level[j]),
                                        default=None)
                    if highest_level:
                        graphics.append(
                            plot.line([(other, highest_level), (x, level)],
                                      color='black',
                                      zorder=0))

        g = sum(graphics)
        g.axes(False)
        return g
示例#11
0
    def set_vertices(self, **vertex_options):
        """
        Sets the vertex plotting parameters for this GraphPlot.  This function
        is called by the constructor but can also be called to make updates to
        the vertex options of an existing GraphPlot object.  Note that the 
        changes are cumulative.
        
        EXAMPLES::

            sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
            sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_vertices(talk=True)
            sage: GP.plot()
            sage: GP.set_vertices(vertex_colors='pink', vertex_shape='^')
            sage: GP.plot()
        """
        # Handle base vertex options
        voptions = {}

        for arg in vertex_options:
            self._options[arg] = vertex_options[arg]

        # First set defaults for styles
        vertex_colors = None
        if self._options['talk']:
            voptions['markersize'] = 500
            if self._options['partition'] is None:
                vertex_colors = '#ffffff'
        else:
            voptions['markersize'] = self._options['vertex_size']

        if 'vertex_colors' not in self._options:
            if self._options['partition'] is not None:
                from sage.plot.colors import rainbow, rgbcolor
                partition = self._options['partition']
                l = len(partition)
                R = rainbow(l)
                vertex_colors = {}
                for i in range(l):
                    vertex_colors[R[i]] = partition[i]
            elif len(self._graph._boundary) != 0:
                vertex_colors = {}
                bdy_verts = []
                int_verts = []
                for v in self._graph.vertex_iterator():
                    if v in self._graph._boundary:
                        bdy_verts.append(v)
                    else:
                        int_verts.append(v)
                vertex_colors['#fec7b8'] = int_verts
                vertex_colors['#b3e8ff'] = bdy_verts
            elif not vertex_colors:
                vertex_colors = '#fec7b8'
        else:
            vertex_colors = self._options['vertex_colors']

        if 'vertex_shape' in self._options:
            voptions['marker'] = self._options['vertex_shape']

        if self._graph.is_directed():
            self._vertex_radius = sqrt(voptions['markersize'] / pi)
            self._arrowshorten = 2 * self._vertex_radius
            if self._arcdigraph:
                self._vertex_radius = sqrt(voptions['markersize'] /
                                           (20500 * pi))

        voptions['zorder'] = 7

        if not isinstance(vertex_colors, dict):
            voptions['facecolor'] = vertex_colors
            if self._arcdigraph:
                self._plot_components['vertices'] = [
                    circle(center,
                           self._vertex_radius,
                           fill=True,
                           facecolor=vertex_colors,
                           clip=False) for center in self._pos.values()
                ]
            else:
                self._plot_components['vertices'] = scatter_plot(
                    self._pos.values(), clip=False, **voptions)
        else:
            # Color list must be ordered:
            pos = []
            colors = []
            for i in vertex_colors:
                pos += [self._pos[j] for j in vertex_colors[i]]
                colors += [i] * len(vertex_colors[i])

            # If all the vertices have not been assigned a color
            if len(self._pos) != len(pos):
                from sage.plot.colors import rainbow, rgbcolor
                vertex_colors_rgb = [rgbcolor(c) for c in vertex_colors]
                for c in rainbow(len(vertex_colors) + 1):
                    if rgbcolor(c) not in vertex_colors_rgb:
                        break
                leftovers = [j for j in self._pos.values() if j not in pos]
                pos += leftovers
                colors += [c] * len(leftovers)

            if self._arcdigraph:
                self._plot_components['vertices'] = [
                    circle(pos[i],
                           self._vertex_radius,
                           fill=True,
                           facecolor=colors[i],
                           clip=False) for i in range(len(pos))
                ]
            else:
                self._plot_components['vertices'] = scatter_plot(
                    pos, facecolor=colors, clip=False, **voptions)

        if self._options['vertex_labels']:
            self._plot_components['vertex_labels'] = []
            # TODO: allow text options
            for v in self._nodelist:
                self._plot_components['vertex_labels'].append(
                    text(str(v), self._pos[v], rgbcolor=(0, 0, 0), zorder=8))
示例#12
0
def geomrep(M1, B1=None, lineorders1=None, pd=None, sp=False):
    """
    Return a sage graphics object containing geometric representation of
    matroid M1.

    INPUT:

    - ``M1`` -- A matroid.
    - ``B1`` -- (optional) A list of elements in ``M1.groundset()`` that
    correspond to a basis of ``M1`` and will be placed as vertices of the
    triangle in the geometric representation of ``M1``.
    - ``lineorders1`` -- (optional) A list of ordered lists of elements of
    ``M1.grondset()`` such that if a line in geometric representation is
    setwise same as any of these then points contained will be traversed in
    that order thus overriding internal order deciding heuristic.
    - ``pd`` - (optional) A dictionary mapping ground set elements to their
    (x,y) positions.
    - ``sp`` -- (optional) If True, a positioning dictionary and line orders
    will be placed in ``M._cached_info``.

    OUTPUT:

    A sage graphics object of type <class 'sage.plot.graphics.Graphics'> that
    corresponds to the geometric representation of the matroid.

    EXAMPLES::

        sage: from sage.matroids import matroids_plot_helpers
        sage: M=matroids.named_matroids.P7()
        sage: G=matroids_plot_helpers.geomrep(M)
        sage: G.show(xmin=-2, xmax=3, ymin=-2, ymax=3)
        sage: M=matroids.named_matroids.P7()
        sage: G=matroids_plot_helpers.geomrep(M,lineorders1=[['f','e','d']])
        sage: G.show(xmin=-2, xmax=3, ymin=-2, ymax=3)

    .. NOTE::

            This method does NOT do any checks.
    """
    G = Graphics()
    # create lists of loops and parallel elements and simplify given matroid
    [M, L, P] = slp(M1, pos_dict=pd, B=B1)
    if B1 is None:
        B1 = list(M.basis())
    M._cached_info = M1._cached_info

    if M.rank() == 0:
        limits = None
        loops = L
        looptext = ", ".join([str(l) for l in loops])
        rectx = -1
        recty = -1
        rectw = 0.5 + 0.4*len(loops) + 0.5  # controlled based on len(loops)
        recth = 0.6
        G += polygon2d([[rectx, recty], [rectx, recty+recth],
                        [rectx+rectw, recty+recth], [rectx+rectw, recty]],
                       color='black', fill=False, thickness=4)
        G += text(looptext, (rectx+0.5, recty+0.3), color='black',
                  fontsize=13)
        G += point((rectx+0.2, recty+0.3), color=Color('#BDBDBD'), size=300,
                   zorder=2)
        G += text('Loop(s)', (rectx+0.5+0.4*len(loops)+0.1, recty+0.3),
                  fontsize=13, color='black')
        limits = tracklims(limits, [rectx, rectx+rectw], [recty, recty+recth])
        G.axes(False)
        G.axes_range(xmin=limits[0]-0.5, xmax=limits[1]+0.5,
                     ymin=limits[2]-0.5, ymax=limits[3]+0.5)
        return G
    elif M.rank() == 1:
        if M._cached_info is not None and \
           'plot_positions' in M._cached_info.keys() and \
           M._cached_info['plot_positions'] is not None:
            pts = M._cached_info['plot_positions']
        else:
            pts = {}
            gnd = sorted(M.groundset())
        pts[gnd[0]] = (1, float(2)/3)
        G += point((1, float(2)/3), size=300, color=Color('#BDBDBD'), zorder=2)
        pt = [1, float(2)/3]
        if len(P) == 0:
            G += text(gnd[0], (float(pt[0]), float(pt[1])), color='black',
                      fontsize=13)
        pts2 = pts
        # track limits [xmin,xmax,ymin,ymax]
        pl = [list(x) for x in pts2.values()]
        lims = tracklims([None, None, None, None], [pt[0] for pt in pl],
                         [pt[1] for pt in pl])
    elif M.rank() == 2:
        nB1 = list(set(list(M.groundset())) - set(B1))
        bline = []
        for j in nB1:
            if M.is_dependent([j, B1[0], B1[1]]):
                bline.append(j)
        interval = len(bline)+1
        if M._cached_info is not None and \
           'plot_positions' in M._cached_info.keys() and \
           M._cached_info['plot_positions'] is not None:
            pts2 = M._cached_info['plot_positions']
        else:
            pts2 = {}
            pts2[B1[0]] = (0, 0)
            pts2[B1[1]] = (2, 0)
            lpt = list(pts2[B1[0]])
            rpt = list(pts2[B1[1]])
            for k in range(len(bline)):
                cc = (float(1)/interval)*(k+1)
                pts2[bline[k]] = (cc*lpt[0]+(1-cc)*rpt[0],
                                  cc*lpt[1]+(1-cc)*rpt[1])
            if sp is True:
                M._cached_info['plot_positions'] = pts2
        # track limits [xmin,xmax,ymin,ymax]
        pl = [list(x) for x in pts2.values()]
        lims = tracklims([None, None, None, None], [pt[0] for pt in pl],
                         [pt[1] for pt in pl])
        bline.extend(B1)
        ptsx, ptsy, x_i, y_i = createline(pts2, bline, lineorders1)
        lims = tracklims(lims, x_i, y_i)
        G += line(zip(x_i, y_i), color='black', thickness=3, zorder=1)
        pels = [p for p in pts2.keys() if any([M1.rank([p, q]) == 1
                for q in P])]
        allpts = [list(pts2[i]) for i in M.groundset()]
        xpts = [float(k[0]) for k in allpts]
        ypts = [float(k[1]) for k in allpts]
        G += points(zip(xpts, ypts), color=Color('#BDBDBD'), size=300,
                    zorder=2)
        for i in pts2:
            if i not in pels:
                pt = list(pts2[i])
                G += text(i, (float(pt[0]), float(pt[1])), color='black',
                          fontsize=13)
    else:
        if M._cached_info is None or \
           'plot_positions' not in M._cached_info.keys() or \
           M._cached_info['plot_positions'] is None:
            (pts, trilines,
             nontripts, curvedlines) = it(M1, B1,
                                          list(set(M.groundset())-set(B1)),
                                          list(set(L) | set(P)))
            pts2 = addnontripts([B1[0], B1[1], B1[2]], nontripts, pts)
            trilines.extend(curvedlines)
        else:
            pts2 = M._cached_info['plot_positions']
            trilines = [list(set(list(x)).difference(L | P))
                        for x in M1.flats(2)
                        if len(list(x)) >= 3]
        pl = [list(x) for x in pts2.values()]
        lims = tracklims([None, None, None, None], [pt[0] for pt in pl],
                         [pt[1] for pt in pl])
        j = 0
        for ll in trilines:
            if len(ll) >= 3:
                ptsx, ptsy, x_i, y_i = createline(pts2, ll, lineorders1)
                lims = tracklims(lims, x_i, y_i)
                G += line(zip(x_i, y_i), color='black', thickness=3, zorder=1)
        pels = [p for p in pts2.keys() if any([M1.rank([p, q]) == 1
                for q in P])]
        allpts = [list(pts2[i]) for i in M.groundset()]
        xpts = [float(k[0]) for k in allpts]
        ypts = [float(k[1]) for k in allpts]
        G += points(zip(xpts, ypts), color=Color('#BDBDBD'), size=300,
                    zorder=2)
        for i in pts2:
            if i not in pels:
                pt = list(pts2[i])
                G += text(i, (float(pt[0]), float(pt[1])), color='black',
                          fontsize=13)
        if sp is True:
            M1._cached_info['plot_positions'] = pts2
            M1._cached_info['plot_lineorders'] = lineorders1
    # deal with loops and parallel elements
    G, lims = addlp(M1, M, L, P, pts2, G, lims)
    G.axes(False)
    G.axes_range(xmin=lims[0]-0.5, xmax=lims[1]+0.5, ymin=lims[2]-0.5,
                 ymax=lims[3]+0.5)
    return G
示例#13
0
def addlp(M, M1, L, P, ptsdict, G=None, limits=None):
    """
    Return a graphics object containing loops (in inset) and parallel elements
    of matroid.

    INPUT:

    - ``M`` -- A matroid.
    - ``M1`` -- A simple matroid corresponding to ``M``.
    - ``L`` -- List of elements in ``M.groundset()`` that are loops of matroid
      ``M``.
    - ``P`` -- List of elements in ``M.groundset()`` not in
      ``M.simplify.groundset()`` or ``L``.
    - ``ptsdict`` -- A dictionary containing elements in ``M.groundset()`` not
      necessarily containing elements of ``L``.
    - ``G`` -- (optional) A sage graphics object to which loops and parallel
      elements of matroid `M` added .
    - ``limits``-- (optional) Current axes limits [xmin,xmax,ymin,ymax].

    OUTPUT:

    A 2-tuple containing:

    1. A sage graphics object containing loops and parallel elements of
       matroid ``M``
    2. axes limits array

    EXAMPLES::

        sage: from sage.matroids import matroids_plot_helpers
        sage: M=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0,1],
        ....: [0, 1, 0, 1, 0, 1, 1,0,0],[0, 0, 1, 1, 1, 0, 1,0,0]])
        sage: [M1,L,P]=matroids_plot_helpers.slp(M)
        sage: G,lims=matroids_plot_helpers.addlp(M,M1,L,P,{0:(0,0)})
        sage: G.show(axes=False)

    .. NOTE::

            This method does NOT do any checks.

    """
    if G is None:
        G = Graphics()
    # deal with loops
    if len(L) > 0:
        loops = L
        looptext = ", ".join([str(l) for l in loops])
        if(limits is None):
            rectx = -1
            recty = -1
        else:
            rectx = limits[0]
            recty = limits[2]-1
        rectw = 0.5 + 0.4*len(loops) + 0.5  # controlled based on len(loops)
        recth = 0.6
        G += polygon2d([[rectx, recty], [rectx, recty+recth],
                        [rectx+rectw, recty+recth], [rectx+rectw, recty]],
                       color='black', fill=False, thickness=4)
        G += text(looptext, (rectx+0.5, recty+0.3), color='black',
                  fontsize=13)
        G += point((rectx+0.2, recty+0.3), color=Color('#BDBDBD'), size=300,
                   zorder=2)
        G += text('Loop(s)', (rectx+0.5+0.4*len(loops)+0.1, recty+0.3),
                  fontsize=13, color='black')
        limits = tracklims(limits, [rectx, rectx+rectw], [recty, recty+recth])
    # deal with parallel elements
    if len(P) > 0:
        # create list of lists where inner lists are parallel classes
        pcls = []
        gnd = sorted(list(M1.groundset()))
        for g in gnd:
            pcl = [g]
            for p in P:
                if M.rank([g, p]) == 1:
                    pcl.extend([p])
            pcls.append(pcl)
        ext_gnd = list(M.groundset())
        for pcl in pcls:
            if len(pcl) > 1:
                basept = list(ptsdict[pcl[0]])
                if len(pcl) <= 2:
                    # add side by side
                    ptsdict[pcl[1]] = (basept[0], basept[1]-0.13)
                    G += points(zip([basept[0]], [basept[1]-0.13]),
                                color=Color('#BDBDBD'), size=300, zorder=2)
                    G += text(pcl[0], (float(basept[0]),
                              float(basept[1])), color='black',
                              fontsize=13)
                    G += text(pcl[1], (float(basept[0]),
                              float(basept[1])-0.13), color='black',
                              fontsize=13)
                    limits = tracklims(limits, [basept[0]], [basept[1]-0.13])
                else:
                    # add in a bracket
                    pce = sorted([str(kk) for kk in pcl])
                    l = newlabel(set(ext_gnd))
                    ext_gnd.append(l)
                    G += text(l+'={ '+", ".join(pce)+' }', (float(basept[0]),
                              float(basept[1]-0.2)-0.034), color='black',
                              fontsize=13)
                    G += text(l, (float(basept[0]),
                              float(basept[1])), color='black',
                              fontsize=13)
                    limits = tracklims(limits, [basept[0]],
                                       [(basept[1]-0.2)-0.034])
    return G, limits
示例#14
0
文件: graph_plot.py 项目: dagss/sage
    def set_edges(self, **edge_options):
        """
        Sets the edge (or arrow) plotting parameters for the GraphPlot object.  This 
        function is called by the constructor but can also be called to make updates to
        the vertex options of an existing GraphPlot object.  Note that the changes are 
        cumulative.
        
        EXAMPLES::

            sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
            sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_edges(edge_style='solid')
            sage: GP.plot()
            sage: GP.set_edges(edge_color='black')
            sage: GP.plot()
            
            sage: d = DiGraph({}, loops=True, multiedges=True, sparse=True)
            sage: d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_edges(edge_style='solid')
            sage: GP.plot()
            sage: GP.set_edges(edge_color='black')
            sage: GP.plot()

        TESTS::
        
            sage: G = Graph("Fooba")
            sage: G.show(edge_colors={'red':[(3,6),(2,5)]})

        Verify that default edge labels are pretty close to being between the vertices
        in some cases where they weren't due to truncating division (trac #10124)::

            sage: test_graphs = graphs.FruchtGraph(), graphs.BullGraph()
            sage: tol = 0.001
            sage: for G in test_graphs:
            ...       E=G.edges()
            ...       for e0, e1, elab in E:
            ...           G.set_edge_label(e0, e1, '%d %d' % (e0, e1))
            ...       gp = G.graphplot(save_pos=True,edge_labels=True)
            ...       vx = gp._plot_components['vertices'][0].xdata
            ...       vy = gp._plot_components['vertices'][0].ydata
            ...       for elab in gp._plot_components['edge_labels']:
            ...           textobj = elab[0]
            ...           x, y, s = textobj.x, textobj.y, textobj.string
            ...           v0, v1 = map(int, s.split())
            ...           vn = vector(((x-(vx[v0]+vx[v1])/2.),y-(vy[v0]+vy[v1])/2.)).norm()
            ...           assert vn < tol


        """
        for arg in edge_options:
            self._options[arg] = edge_options[arg]
        if 'edge_colors' in edge_options: self._options['color_by_label'] = False
        
        # Handle base edge options: thickness, linestyle
        eoptions={}
        if 'edge_style' in self._options:
            eoptions['linestyle'] = self._options['edge_style']
        if 'thickness' in self._options:
            eoptions['thickness'] = self._options['thickness']
            
        # Set labels param to add labels on the fly
        labels = False
        if self._options['edge_labels']:
            labels = True
            self._plot_components['edge_labels'] = []

        # Make dict collection of all edges (keep label and edge color)           
        edges_to_draw = {}
        if self._options['color_by_label'] or isinstance(self._options['edge_colors'], dict):
            if self._options['color_by_label']: edge_colors = self._graph._color_by_label()
            else: edge_colors = self._options['edge_colors']
            for color in edge_colors:
                for edge in edge_colors[color]:
                    key = tuple(sorted([edge[0],edge[1]]))
                    if key == (edge[0],edge[1]): head = 1
                    else: head = 0 
                    
                    if len(edge) < 3:
                        label = self._graph.edge_label(edge[0],edge[1])
                        if isinstance(label, list):
                            if key in edges_to_draw:
                                edges_to_draw[key].append((label[-1], color, head))
                            else:
                                edges_to_draw[key] = [(label[-1], color, head)]
                            for i in range(len(label)-1):
                                edges_to_draw[key].append((label[-1], color, head))
                    else:
                        label = edge[2]
                        
                    if key in edges_to_draw:
                        edges_to_draw[key].append((label, color, head))
                    else:
                        edges_to_draw[key] = [(label, color, head)]
            # add unspecified edges in (default color black)
            for edge in self._graph.edge_iterator():
                key = tuple(sorted([edge[0],edge[1]]))
                label = edge[2]
                specified = False
                if key in edges_to_draw:
                    for old_label, old_color, old_head in edges_to_draw[key]:
                        if label == old_label:
                            specified = True
                            break
                if not specified:
                    if key == (edge[0],edge[1]): head = 1
                    else: head = 0 
                    edges_to_draw[key] = [(label, 'black', head)]
        else:
            for edge in self._graph.edges(sort=True):
                key = tuple(sorted([edge[0],edge[1]]))
                if key == (edge[0],edge[1]): head = 1
                else: head = 0 
                if key in edges_to_draw:
                    edges_to_draw[key].append((edge[2], self._options['edge_color'], head))
                else:
                    edges_to_draw[key] = [(edge[2], self._options['edge_color'], head)]
                
        if edges_to_draw:
            self._plot_components['edges'] = []
        else:
            return
                        
        # Check for multi-edges or loops
        if self._arcs or self._loops:
            tmp = edges_to_draw.copy()
            dist = self._options['dist']*2.
            loop_size = self._options['loop_size']
            max_dist = self._options['max_dist']
            from sage.functions.all import sqrt
            for (a,b) in tmp:
                if a == b:
                    # Loops 
                    distance = dist
                    local_labels = edges_to_draw.pop((a,b))
                    if len(local_labels)*dist > max_dist:
                        distance = float(max_dist)/len(local_labels)
                    curr_loop_size = loop_size
                    for i in range(len(local_labels)):
                        self._plot_components['edges'].append(circle((self._pos[a][0],self._pos[a][1]-curr_loop_size), curr_loop_size, rgbcolor=local_labels[i][1], **eoptions))
                        if labels:
                            self._plot_components['edge_labels'].append(text(local_labels[i][0], (self._pos[a][0], self._pos[a][1]-2*curr_loop_size)))
                        curr_loop_size += distance/4
                elif len(edges_to_draw[(a,b)]) > 1:
                    # Multi-edge
                    local_labels = edges_to_draw.pop((a,b))
                    
                    # Compute perpendicular bisector
                    p1 = self._pos[a]
                    p2 = self._pos[b]
                    M = ((p1[0]+p2[0])/2., (p1[1]+p2[1])/2.) # midpoint
                    if not p1[1] == p2[1]:
                        S = float(p1[0]-p2[0])/(p2[1]-p1[1]) # perp slope
                        y = lambda x : S*x-S*M[0]+M[1] # perp bisector line
                        
                        # f,g are functions of distance d to determine x values 
                        # on line y at d from point M
                        f = lambda d : sqrt(d**2/(1.+S**2)) + M[0]
                        g = lambda d : -sqrt(d**2/(1.+S**2)) + M[0]
                        
                        odd_x = f
                        even_x = g
                        if p1[0] == p2[0]:
                            odd_y = lambda d : M[1]
                            even_y = odd_y
                        else:
                            odd_y = lambda x : y(f(x))
                            even_y = lambda x : y(g(x))
                    else:
                        odd_x = lambda d : M[0]
                        even_x = odd_x
                        odd_y = lambda d : M[1] + d
                        even_y = lambda d : M[1] - d
                    
                    # We now have the control points for each bezier curve
                    # in terms of distance parameter d.
                    # Also note that the label for each edge should be drawn at d/2.
                    # (This is because we're using the perp bisectors).
                    distance = dist
                    if len(local_labels)*dist > max_dist:
                        distance = float(max_dist)/len(local_labels)
                    for i in range(len(local_labels)/2):
                        k = (i+1.0)*distance
                        if self._arcdigraph:
                            odd_start = self._polar_hack_for_multidigraph(p1, [odd_x(k),odd_y(k)], self._vertex_radius)[0]
                            odd_end = self._polar_hack_for_multidigraph([odd_x(k),odd_y(k)], p2, self._vertex_radius)[1]
                            even_start = self._polar_hack_for_multidigraph(p1, [even_x(k),even_y(k)], self._vertex_radius)[0]
                            even_end = self._polar_hack_for_multidigraph([even_x(k),even_y(k)], p2, self._vertex_radius)[1]
                            self._plot_components['edges'].append(arrow(path=[[odd_start,[odd_x(k),odd_y(k)],odd_end]], head=local_labels[2*i][2], zorder=1, rgbcolor=local_labels[2*i][1], **eoptions))
                            self._plot_components['edges'].append(arrow(path=[[even_start,[even_x(k),even_y(k)],even_end]], head=local_labels[2*i+1][2], zorder=1, rgbcolor=local_labels[2*i+1][1], **eoptions))
                        else:
                            self._plot_components['edges'].append(bezier_path([[p1,[odd_x(k),odd_y(k)],p2]],zorder=1, rgbcolor=local_labels[2*i][1], **eoptions))
                            self._plot_components['edges'].append(bezier_path([[p1,[even_x(k),even_y(k)],p2]],zorder=1, rgbcolor=local_labels[2*i+1][1], **eoptions))
                        if labels:
                            j = k/2.0
                            self._plot_components['edge_labels'].append(text(local_labels[2*i][0],[odd_x(j),odd_y(j)]))
                            self._plot_components['edge_labels'].append(text(local_labels[2*i+1][0],[even_x(j),even_y(j)]))
                    if len(local_labels)%2 == 1:
                        edges_to_draw[(a,b)] = [local_labels[-1]] # draw line for last odd    
        
        dir = self._graph.is_directed()                                
        for (a,b) in edges_to_draw:
            if self._arcdigraph:
                C,D = self._polar_hack_for_multidigraph(self._pos[a], self._pos[b], self._vertex_radius)
                self._plot_components['edges'].append(arrow(C,D, rgbcolor=edges_to_draw[(a,b)][0][1], head=edges_to_draw[(a,b)][0][2], **eoptions))
                if labels:
                    self._plot_components['edge_labels'].append(text(str(edges_to_draw[(a,b)][0][0]),[(C[0]+D[0])/2., (C[1]+D[1])/2.]))
            elif dir:
                self._plot_components['edges'].append(arrow(self._pos[a],self._pos[b], rgbcolor=edges_to_draw[(a,b)][0][1], arrowshorten=self._arrowshorten, head=edges_to_draw[(a,b)][0][2], **eoptions))
            else:
                self._plot_components['edges'].append(line([self._pos[a],self._pos[b]], rgbcolor=edges_to_draw[(a,b)][0][1], **eoptions))
            if labels and not self._arcdigraph:
                self._plot_components['edge_labels'].append(text(str(edges_to_draw[(a,b)][0][0]),[(self._pos[a][0]+self._pos[b][0])/2., (self._pos[a][1]+self._pos[b][1])/2.]))
示例#15
0
文件: graph_plot.py 项目: dagss/sage
    def set_vertices(self, **vertex_options):
        """
        Sets the vertex plotting parameters for this GraphPlot.  This function
        is called by the constructor but can also be called to make updates to
        the vertex options of an existing GraphPlot object.  Note that the 
        changes are cumulative.
        
        EXAMPLES::

            sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
            sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_vertices(talk=True)
            sage: GP.plot()
            sage: GP.set_vertices(vertex_colors='pink', vertex_shape='^')
            sage: GP.plot()
        """
        # Handle base vertex options
        voptions = {}
        
        for arg in vertex_options:
            self._options[arg] = vertex_options[arg]
        
        # First set defaults for styles
        vertex_colors = None
        if self._options['talk']:
            voptions['markersize'] = 500
            if self._options['partition'] is None:
                vertex_colors = '#ffffff'
        else:
            voptions['markersize'] = self._options['vertex_size']
            
        if 'vertex_colors' not in self._options or self._options['vertex_colors'] is None:
            if self._options['partition'] is not None: 
                from sage.plot.colors import rainbow,rgbcolor
                partition = self._options['partition']
                l = len(partition)
                R = rainbow(l)
                vertex_colors = {}
                for i in range(l):
                    vertex_colors[R[i]] = partition[i]
            elif len(self._graph._boundary) != 0:
                vertex_colors = {}
                bdy_verts = []
                int_verts = []
                for v in self._graph.vertex_iterator():
                    if v in self._graph._boundary:
                        bdy_verts.append(v)
                    else:
                        int_verts.append(v)
                vertex_colors['#fec7b8'] = int_verts
                vertex_colors['#b3e8ff'] = bdy_verts
            elif not vertex_colors:
                vertex_colors='#fec7b8'
        else:
            vertex_colors = self._options['vertex_colors']

        if 'vertex_shape' in self._options:
            voptions['marker'] = self._options['vertex_shape']
            
        if self._graph.is_directed():
            self._vertex_radius = sqrt(voptions['markersize']/pi)
            self._arrowshorten = 2*self._vertex_radius
            if self._arcdigraph:
                self._vertex_radius = sqrt(voptions['markersize']/(20500*pi))

        voptions['zorder'] = 7    
        
        if not isinstance(vertex_colors, dict):
            voptions['facecolor'] = vertex_colors
            if self._arcdigraph:
                self._plot_components['vertices'] = [circle(center,
                    self._vertex_radius, fill=True, facecolor=vertex_colors, clip=False)
                    for center in self._pos.values()]
            else:
                self._plot_components['vertices'] = scatter_plot(
                    self._pos.values(), clip=False, **voptions)
        else:
            # Color list must be ordered:
            pos = []
            colors = []
            for i in vertex_colors:
                pos += [self._pos[j] for j in vertex_colors[i]]
                colors += [i]*len(vertex_colors[i])

            # If all the vertices have not been assigned a color
            if len(self._pos)!=len(pos):
                from sage.plot.colors import rainbow,rgbcolor
                vertex_colors_rgb=[rgbcolor(c) for c in vertex_colors]
                for c in rainbow(len(vertex_colors)+1):
                    if rgbcolor(c) not in vertex_colors_rgb:
                        break
                leftovers=[j for j in self._pos.values() if j not in pos]
                pos+=leftovers
                colors+=[c]*len(leftovers)

            if self._arcdigraph:
                self._plot_components['vertices'] = [circle(pos[i],
                    self._vertex_radius, fill=True, facecolor=colors[i], clip=False)
                    for i in range(len(pos))]
            else:
                self._plot_components['vertices'] = scatter_plot(pos,
                    facecolor=colors, clip=False, **voptions)

        if self._options['vertex_labels']:
            self._plot_components['vertex_labels'] = []
            # TODO: allow text options
            for v in self._nodelist:
                self._plot_components['vertex_labels'].append(text(str(v),
                    self._pos[v], rgbcolor=(0,0,0), zorder=8))
示例#16
0
def plot_bounds(dop, ini=None, pt=None, eps=None, **kwds):
    r"""
    EXAMPLES::

        sage: from ore_algebra import *
        sage: from ore_algebra.analytic.naive_sum import *
        sage: Dops, x, Dx = DifferentialOperators()

        sage: plot_bounds(Dx - 1, [CBF(1)], CBF(i)/2, RBF(1e-20))
        Graphics object consisting of 5 graphics primitives

        sage: plot_bounds(x*Dx^3 + 2*Dx^2 + x*Dx, eps=1e-8)
        Graphics object consisting of 5 graphics primitives

        sage: dop = x*Dx^2 + Dx + x
        sage: plot_bounds(dop, eps=1e-8,
        ....:       ini=LogSeriesInitialValues(0, {0: (1, 0)}, dop))
        Graphics object consisting of 5 graphics primitives

        sage: dop = ((x^2 + 10*x + 50)*Dx^10 + (5/9*x^2 + 50/9*x + 155/9)*Dx^9
        ....: + (-10/3*x^2 - 100/3*x - 190/3)*Dx^8 + (30*x^2 + 300*x + 815)*Dx^7
        ....: + (145*x^2 + 1445*x + 3605)*Dx^6 + (5/2*x^2 + 25*x + 115/2)*Dx^5
        ....: + (20*x^2 + 395/2*x + 1975/4)*Dx^4 + (-5*x^2 - 50*x - 130)*Dx^3
        ....: + (5/4*x^2 + 25/2*x + 105/4)*Dx^2 + (-20*x^2 - 195*x - 480)*Dx
        ....: + 5*x - 10)
        sage: plot_bounds(dop, pol_part_len=4, bound_inverse="solve", eps=1e-10) # long time
        Graphics object consisting of 5 graphics primitives
    """
    import sage.plot.all as plot
    from sage.all import VectorSpace, QQ, RIF
    from ore_algebra.analytic.bounds import abs_min_nonzero_root
    if ini is None:
        ini = _random_ini(dop)
    if pt is None:
        rad = abs_min_nonzero_root(dop.leading_coefficient())
        pt = QQ(2) if rad == infinity else RIF(rad/2).simplest_rational()
    if eps is None:
        eps = RBF(1e-50)
    logger.info("point: %s", pt)
    logger.info("initial values: %s", ini)
    recd = []
    maj = bounds.DiffOpBound(dop, max_effort=0, **kwds)
    series_sum(dop, ini, pt, eps, stride=1, record_bounds_in=recd, maj=maj)
    ref_sum = recd[-1][1][0].add_error(recd[-1][2])
    recd[-1:] = []
    # Note: this won't work well when the errors get close to the double
    # precision underflow threshold.
    err = [(psum[0]-ref_sum).abs() for n, psum, _ in recd]
    large = float(1e200) # plot() is not robust to large values
    error_plot_upper = plot.line(
            [(n, v.upper()) for (n, v) in enumerate(err)
                            if abs(float(v.upper())) < large],
            color="lightgray", scale="semilogy")
    error_plot = plot.line(
            [(n, v.lower()) for (n, v) in enumerate(err)
                            if abs(float(v.lower())) < large],
            color="black", scale="semilogy")
    bound_plot_lower = plot.line(
            [(n, bound.lower()) for n, _, bound in recd
                                if abs(float(bound.lower())) < large],
            color="lightblue", scale="semilogy")
    bound_plot = plot.line(
            [(n, bound.upper()) for n, _, bound in recd
                                if abs(float(bound.upper())) < large],
            color="blue", scale="semilogy")
    title = repr(dop) + " @ x=" + repr(pt)
    title = title if len(title) < 80 else title[:77]+"..."
    myplot = error_plot_upper + error_plot + bound_plot_lower + bound_plot
    ymax = myplot.ymax()
    if ymax < float('inf'):
        txt = plot.text(title, (myplot.xmax(), ymax),
                        horizontal_alignment='right', vertical_alignment='top')
        myplot += txt
    return myplot
示例#17
0
def addlp(M, M1, L, P, ptsdict, G=None, limits=None):
    """
    Return a graphics object containing loops (in inset) and parallel elements
    of matroid.

    INPUT:

    - ``M`` -- A matroid.
    - ``M1`` -- A simple matroid corresponding to ``M``.
    - ``L`` -- List of elements in ``M.groundset()`` that are loops of matroid
      ``M``.
    - ``P`` -- List of elements in ``M.groundset()`` not in
      ``M.simplify.groundset()`` or ``L``.
    - ``ptsdict`` -- A dictionary containing elements in ``M.groundset()`` not
      necessarily containing elements of ``L``.
    - ``G`` -- (optional) A sage graphics object to which loops and parallel
      elements of matroid `M` added .
    - ``limits``-- (optional) Current axes limits [xmin,xmax,ymin,ymax].

    OUTPUT:

    A 2-tuple containing:

    1. A sage graphics object containing loops and parallel elements of
       matroid ``M``
    2. axes limits array

    EXAMPLES::

        sage: from sage.matroids import matroids_plot_helpers
        sage: M=Matroid(ring=GF(2), matrix=[[1, 0, 0, 0, 1, 1, 1,0,1],
        ....: [0, 1, 0, 1, 0, 1, 1,0,0],[0, 0, 1, 1, 1, 0, 1,0,0]])
        sage: [M1,L,P]=matroids_plot_helpers.slp(M)
        sage: G,lims=matroids_plot_helpers.addlp(M,M1,L,P,{0:(0,0)})
        sage: G.show(axes=False)

    .. NOTE::

            This method does NOT do any checks.

    """
    if G is None:
        G = Graphics()
    # deal with loops
    if len(L) > 0:
        loops = L
        looptext = ", ".join([str(l) for l in loops])
        if (limits is None):
            rectx = -1
            recty = -1
        else:
            rectx = limits[0]
            recty = limits[2] - 1
        rectw = 0.5 + 0.4 * len(loops) + 0.5  # controlled based on len(loops)
        recth = 0.6
        G += polygon2d(
            [[rectx, recty], [rectx, recty + recth],
             [rectx + rectw, recty + recth], [rectx + rectw, recty]],
            color='black',
            fill=False,
            thickness=4)
        G += text(looptext, (rectx + 0.5, recty + 0.3),
                  color='black',
                  fontsize=13)
        G += point((rectx + 0.2, recty + 0.3),
                   color=Color('#BDBDBD'),
                   size=300,
                   zorder=2)
        G += text('Loop(s)',
                  (rectx + 0.5 + 0.4 * len(loops) + 0.1, recty + 0.3),
                  fontsize=13,
                  color='black')
        limits = tracklims(limits, [rectx, rectx + rectw],
                           [recty, recty + recth])
    # deal with parallel elements
    if len(P) > 0:
        # create list of lists where inner lists are parallel classes
        pcls = []
        gnd = sorted(list(M1.groundset()))
        for g in gnd:
            pcl = [g]
            for p in P:
                if M.rank([g, p]) == 1:
                    pcl.extend([p])
            pcls.append(pcl)
        ext_gnd = list(M.groundset())
        for pcl in pcls:
            if len(pcl) > 1:
                basept = list(ptsdict[pcl[0]])
                if len(pcl) <= 2:
                    # add side by side
                    ptsdict[pcl[1]] = (basept[0], basept[1] - 0.13)
                    G += points(zip([basept[0]], [basept[1] - 0.13]),
                                color=Color('#BDBDBD'),
                                size=300,
                                zorder=2)
                    G += text(pcl[0], (float(basept[0]), float(basept[1])),
                              color='black',
                              fontsize=13)
                    G += text(pcl[1],
                              (float(basept[0]), float(basept[1]) - 0.13),
                              color='black',
                              fontsize=13)
                    limits = tracklims(limits, [basept[0]], [basept[1] - 0.13])
                else:
                    # add in a bracket
                    pce = sorted([str(kk) for kk in pcl])
                    l = newlabel(set(ext_gnd))
                    ext_gnd.append(l)
                    G += text(
                        l + '={ ' + ", ".join(pce) + ' }',
                        (float(basept[0]), float(basept[1] - 0.2) - 0.034),
                        color='black',
                        fontsize=13)
                    G += text(l, (float(basept[0]), float(basept[1])),
                              color='black',
                              fontsize=13)
                    limits = tracklims(limits, [basept[0]],
                                       [(basept[1] - 0.2) - 0.034])
    return G, limits
示例#18
0
    def set_edges(self, **edge_options):
        """
        Sets the edge (or arrow) plotting parameters for the GraphPlot object.  This 
        function is called by the constructor but can also be called to make updates to
        the vertex options of an existing GraphPlot object.  Note that the changes are 
        cumulative.
        
        EXAMPLES::

            sage: g = Graph({}, loops=True, multiedges=True, sparse=True)
            sage: g.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = g.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_edges(edge_style='solid')
            sage: GP.plot()
            sage: GP.set_edges(edge_color='black')
            sage: GP.plot()
            
            sage: d = DiGraph({}, loops=True, multiedges=True, sparse=True)
            sage: d.add_edges([(0,0,'a'),(0,0,'b'),(0,1,'c'),(0,1,'d'),
            ...     (0,1,'e'),(0,1,'f'),(0,1,'f'),(2,1,'g'),(2,2,'h')])
            sage: GP = d.graphplot(vertex_size=100, edge_labels=True, color_by_label=True, edge_style='dashed')
            sage: GP.set_edges(edge_style='solid')
            sage: GP.plot()
            sage: GP.set_edges(edge_color='black')
            sage: GP.plot()

        TESTS::
        
            sage: G = Graph("Fooba")
            sage: G.show(edge_colors={'red':[(3,6),(2,5)]})

        Verify that default edge labels are pretty close to being between the vertices
        in some cases where they weren't due to truncating division (trac #10124)::

            sage: test_graphs = graphs.FruchtGraph(), graphs.BullGraph()
            sage: tol = 0.001
            sage: for G in test_graphs:
            ...       E=G.edges()
            ...       for e0, e1, elab in E:
            ...           G.set_edge_label(e0, e1, '%d %d' % (e0, e1))
            ...       gp = G.graphplot(save_pos=True,edge_labels=True)
            ...       vx = gp._plot_components['vertices'][0].xdata
            ...       vy = gp._plot_components['vertices'][0].ydata
            ...       for elab in gp._plot_components['edge_labels']:
            ...           textobj = elab[0]
            ...           x, y, s = textobj.x, textobj.y, textobj.string
            ...           v0, v1 = map(int, s.split())
            ...           vn = vector(((x-(vx[v0]+vx[v1])/2.),y-(vy[v0]+vy[v1])/2.)).norm()
            ...           assert vn < tol


        """
        for arg in edge_options:
            self._options[arg] = edge_options[arg]
        if 'edge_colors' in edge_options:
            self._options['color_by_label'] = False

        # Handle base edge options: thickness, linestyle
        eoptions = {}
        if 'edge_style' in self._options:
            eoptions['linestyle'] = self._options['edge_style']
        if 'thickness' in self._options:
            eoptions['thickness'] = self._options['thickness']

        # Set labels param to add labels on the fly
        labels = False
        if self._options['edge_labels']:
            labels = True
            self._plot_components['edge_labels'] = []

        # Make dict collection of all edges (keep label and edge color)
        edges_to_draw = {}
        if self._options['color_by_label'] or isinstance(
                self._options['edge_colors'], dict):
            if self._options['color_by_label']:
                edge_colors = self._graph._color_by_label()
            else:
                edge_colors = self._options['edge_colors']
            for color in edge_colors:
                for edge in edge_colors[color]:
                    key = tuple(sorted([edge[0], edge[1]]))
                    if key == (edge[0], edge[1]): head = 1
                    else: head = 0

                    if len(edge) < 3:
                        label = self._graph.edge_label(edge[0], edge[1])
                        if isinstance(label, list):
                            if key in edges_to_draw:
                                edges_to_draw[key].append(
                                    (label[-1], color, head))
                            else:
                                edges_to_draw[key] = [(label[-1], color, head)]
                            for i in range(len(label) - 1):
                                edges_to_draw[key].append(
                                    (label[-1], color, head))
                    else:
                        label = edge[2]

                    if key in edges_to_draw:
                        edges_to_draw[key].append((label, color, head))
                    else:
                        edges_to_draw[key] = [(label, color, head)]
            # add unspecified edges in (default color black)
            for edge in self._graph.edge_iterator():
                key = tuple(sorted([edge[0], edge[1]]))
                label = edge[2]
                specified = False
                if key in edges_to_draw:
                    for old_label, old_color, old_head in edges_to_draw[key]:
                        if label == old_label:
                            specified = True
                            break
                if not specified:
                    if key == (edge[0], edge[1]): head = 1
                    else: head = 0
                    edges_to_draw[key] = [(label, 'black', head)]
        else:
            for edge in self._graph.edges(sort=True):
                key = tuple(sorted([edge[0], edge[1]]))
                if key == (edge[0], edge[1]): head = 1
                else: head = 0
                if key in edges_to_draw:
                    edges_to_draw[key].append(
                        (edge[2], self._options['edge_color'], head))
                else:
                    edges_to_draw[key] = [(edge[2],
                                           self._options['edge_color'], head)]

        if edges_to_draw:
            self._plot_components['edges'] = []
        else:
            return

        # Check for multi-edges or loops
        if self._arcs or self._loops:
            tmp = edges_to_draw.copy()
            dist = self._options['dist'] * 2.
            loop_size = self._options['loop_size']
            max_dist = self._options['max_dist']
            from sage.functions.all import sqrt
            for (a, b) in tmp:
                if a == b:
                    # Loops
                    distance = dist
                    local_labels = edges_to_draw.pop((a, b))
                    if len(local_labels) * dist > max_dist:
                        distance = float(max_dist) / len(local_labels)
                    curr_loop_size = loop_size
                    for i in range(len(local_labels)):
                        self._plot_components['edges'].append(
                            circle((self._pos[a][0],
                                    self._pos[a][1] - curr_loop_size),
                                   curr_loop_size,
                                   rgbcolor=local_labels[i][1],
                                   **eoptions))
                        if labels:
                            self._plot_components['edge_labels'].append(
                                text(local_labels[i][0],
                                     (self._pos[a][0],
                                      self._pos[a][1] - 2 * curr_loop_size)))
                        curr_loop_size += distance / 4
                elif len(edges_to_draw[(a, b)]) > 1:
                    # Multi-edge
                    local_labels = edges_to_draw.pop((a, b))

                    # Compute perpendicular bisector
                    p1 = self._pos[a]
                    p2 = self._pos[b]
                    M = (
                        (p1[0] + p2[0]) / 2., (p1[1] + p2[1]) / 2.)  # midpoint
                    if not p1[1] == p2[1]:
                        S = float(p1[0] - p2[0]) / (p2[1] - p1[1]
                                                    )  # perp slope
                        y = lambda x: S * x - S * M[0] + M[
                            1]  # perp bisector line

                        # f,g are functions of distance d to determine x values
                        # on line y at d from point M
                        f = lambda d: sqrt(d**2 / (1. + S**2)) + M[0]
                        g = lambda d: -sqrt(d**2 / (1. + S**2)) + M[0]

                        odd_x = f
                        even_x = g
                        if p1[0] == p2[0]:
                            odd_y = lambda d: M[1]
                            even_y = odd_y
                        else:
                            odd_y = lambda x: y(f(x))
                            even_y = lambda x: y(g(x))
                    else:
                        odd_x = lambda d: M[0]
                        even_x = odd_x
                        odd_y = lambda d: M[1] + d
                        even_y = lambda d: M[1] - d

                    # We now have the control points for each bezier curve
                    # in terms of distance parameter d.
                    # Also note that the label for each edge should be drawn at d/2.
                    # (This is because we're using the perp bisectors).
                    distance = dist
                    if len(local_labels) * dist > max_dist:
                        distance = float(max_dist) / len(local_labels)
                    for i in range(len(local_labels) / 2):
                        k = (i + 1.0) * distance
                        if self._arcdigraph:
                            odd_start = self._polar_hack_for_multidigraph(
                                p1, [odd_x(k), odd_y(k)],
                                self._vertex_radius)[0]
                            odd_end = self._polar_hack_for_multidigraph(
                                [odd_x(k), odd_y(k)], p2,
                                self._vertex_radius)[1]
                            even_start = self._polar_hack_for_multidigraph(
                                p1, [even_x(k), even_y(k)],
                                self._vertex_radius)[0]
                            even_end = self._polar_hack_for_multidigraph(
                                [even_x(k), even_y(k)], p2,
                                self._vertex_radius)[1]
                            self._plot_components['edges'].append(
                                arrow(path=[[
                                    odd_start, [odd_x(k), odd_y(k)], odd_end
                                ]],
                                      head=local_labels[2 * i][2],
                                      zorder=1,
                                      rgbcolor=local_labels[2 * i][1],
                                      **eoptions))
                            self._plot_components['edges'].append(
                                arrow(path=[[
                                    even_start, [even_x(k),
                                                 even_y(k)], even_end
                                ]],
                                      head=local_labels[2 * i + 1][2],
                                      zorder=1,
                                      rgbcolor=local_labels[2 * i + 1][1],
                                      **eoptions))
                        else:
                            self._plot_components['edges'].append(
                                bezier_path(
                                    [[p1, [odd_x(k), odd_y(k)], p2]],
                                    zorder=1,
                                    rgbcolor=local_labels[2 * i][1],
                                    **eoptions))
                            self._plot_components['edges'].append(
                                bezier_path(
                                    [[p1, [even_x(k), even_y(k)], p2]],
                                    zorder=1,
                                    rgbcolor=local_labels[2 * i + 1][1],
                                    **eoptions))
                        if labels:
                            j = k / 2.0
                            self._plot_components['edge_labels'].append(
                                text(local_labels[2 * i][0],
                                     [odd_x(j), odd_y(j)]))
                            self._plot_components['edge_labels'].append(
                                text(local_labels[2 * i + 1][0],
                                     [even_x(j), even_y(j)]))
                    if len(local_labels) % 2 == 1:
                        edges_to_draw[(a, b)] = [local_labels[-1]
                                                 ]  # draw line for last odd

        dir = self._graph.is_directed()
        for (a, b) in edges_to_draw:
            if self._arcdigraph:
                C, D = self._polar_hack_for_multidigraph(
                    self._pos[a], self._pos[b], self._vertex_radius)
                self._plot_components['edges'].append(
                    arrow(C,
                          D,
                          rgbcolor=edges_to_draw[(a, b)][0][1],
                          head=edges_to_draw[(a, b)][0][2],
                          **eoptions))
                if labels:
                    self._plot_components['edge_labels'].append(
                        text(str(edges_to_draw[(a, b)][0][0]),
                             [(C[0] + D[0]) / 2., (C[1] + D[1]) / 2.]))
            elif dir:
                self._plot_components['edges'].append(
                    arrow(self._pos[a],
                          self._pos[b],
                          rgbcolor=edges_to_draw[(a, b)][0][1],
                          arrowshorten=self._arrowshorten,
                          head=edges_to_draw[(a, b)][0][2],
                          **eoptions))
            else:
                self._plot_components['edges'].append(
                    line([self._pos[a], self._pos[b]],
                         rgbcolor=edges_to_draw[(a, b)][0][1],
                         **eoptions))
            if labels and not self._arcdigraph:
                self._plot_components['edge_labels'].append(
                    text(str(edges_to_draw[(a, b)][0][0]),
                         [(self._pos[a][0] + self._pos[b][0]) / 2.,
                          (self._pos[a][1] + self._pos[b][1]) / 2.]))