示例#1
0
def flipper_nf_to_sage(K, name='a'):
    r"""
    Convert a flipper number field into a Sage number field

    .. NOTE::

        Currently, the code is not careful at all with root isolation.

    EXAMPLES::

        sage: import flipper  # optional - flipper
        sage: from flatsurf.geometry.similarity_surface_generators import flipper_nf_to_sage
        sage: p = flipper.kernel.Polynomial([-2r] + [0r]*5 + [1r]) # optional - flipper
        sage: r1,r2 = p.real_roots()                               # optional - flipper
        sage: K = flipper.kernel.NumberField(r1)                   # optional - flipper
        sage: K_sage = flipper_nf_to_sage(K)                       # optional - flipper
        sage: K_sage                                               # optional - flipper
        Number Field in a with defining polynomial x^6 - 2
        sage: AA(K_sage.gen())                                     # optional - flipper
        -1.122462048309373?
    """
    from sage.rings.number_field.number_field import NumberField
    from sage.rings.all import QQ,RIF,AA

    r = K.lmbda.interval_approximation()
    l = r.lower * ZZ(10)**(-r.precision)
    u = r.upper * ZZ(10)**(-r.precision)

    p = QQ['x'](K.polynomial.coefficients)
    s = AA.polynomial_root(p, RIF(l,u))
    return NumberField(p, name, embedding=s)
def flipper_nf_to_sage(K, name='a'):
    r"""
    Convert a flipper number field into a Sage number field

    .. NOTE::

        Currently, the code is not careful at all with root isolation.

    EXAMPLES::

        sage: import flipper  # optional - flipper
        sage: import realalg  # optional - flipper
        sage: from flatsurf.geometry.similarity_surface_generators import flipper_nf_to_sage
        sage: K = realalg.RealNumberField([-2r] + [0r]*5 + [1r])   # optional - flipper
        sage: K_sage = flipper_nf_to_sage(K)                       # optional - flipper
        sage: K_sage                                               # optional - flipper
        Number Field in a with defining polynomial x^6 - 2 with a = 1.122462048309373?
        sage: AA(K_sage.gen())                                     # optional - flipper
        1.122462048309373?
    """
    r = K.lmbda.interval()
    l = r.lower * ZZ(10)**(-r.precision)
    u = r.upper * ZZ(10)**(-r.precision)

    p = QQ['x'](K.coefficients)
    s = AA.polynomial_root(p, RIF(l, u))
    return NumberField(p, name, embedding=s)
示例#3
0
def number_field_to_AA(a):
    r"""
    It is a mess to convert an element of a number field to the algebraic field
    ``AA``. This is a temporary fix.
    """
    try:
        return AA(a)
    except TypeError:
        return AA.polynomial_root(a.minpoly(), RIF(a))
示例#4
0
def number_field_to_AA(a):
    r"""
    It is a mess to convert an element of a number field to the algebraic field
    ``AA``. This is a temporary fix.
    """
    try:
        return AA(a)
    except TypeError:
        return AA.polynomial_root(a.minpoly(), RIF(a))
def from_mathematica(a):
    try:
        return QQ(a.sage())
    except Exception:
        pass
    try:
        return AA(a.sage())
    except Exception:
        coefficients = mathematica.CoefficientList(
            mathematica.MinimalPolynomial(a, 'x'), 'x').sage()
        x = polygen(QQ)
        minpoly = x.parent()(coefficients)
        interval = mathematica.IsolatingInterval(a).sage()
        rif_interval = RIF(interval)
        return AA.polynomial_root(minpoly, rif_interval)
示例#6
0
    - 251568270025211201955389171860338579171675714868104052152789880989805712726614197574887246767925108246607970007160940134370673529705101398997875679835167365081669374673539993436160000*t**3
    - 141772430429024326881509616736177148212059744813752208473666088996700368688933789363560771135161864201721524861419389136852260702560567771393655430337183040528733205980885277265100800000*t**2
    - 25817606346086956476758470208850883766420383787607030339022713274189365873405154695767797745935894060883806800961601773820707673481632102376182116930107064769426021006200320503617211596800*t
    + 34918206405098505823938790072675572231488655998026261577866691497637535623661745400444768148106948876570405151317417742685700849593772165309178580940805695949542187927076864000)*Dt)
quadric_slice_pol = (
    4980990673427087034113103774848375913397675011396681161337606780457883155824640000000000*t**12
    - 16313074573215242896867677175985719375664055250377801991087546344967331905536000000000*t**9
    - 14852779293587242300314544658084523021409425155052443959294262319432698489552764928000000*t**8
    + 18694126910889886952945780127491545129704079293214429569400282861674612412907520000*t**6
    + 32429224374768702788524801575483580065598417846595577296275963028007688596147404800000*t**5
    + 14763130935033327878568955564665179022508855828282305094488782847988800598441515915673600*t**4
    - 7447056930374930458107131157447569387299331973073657492405996702806537404416000*t**3
    - 18581243794708202636835504417848386599346688512251081679746508518773002589362454528*t**2
    - 16116744082275656666424675660780874575937043631040306492377025123023286892432343685120*t
    - 4891341219838850087826096307272910719484535278552470341569283855964428449539674077056375)
quadric_slice_crit = AA.polynomial_root(quadric_slice_pol, RIF(-0.999,-0.998))

aa = AA.polynomial_root(AA.common_polynomial(t**2 - t - 6256320), RIF(-RR(2500.7637305969961), -RR(2500.7637305969956)))
K, a = NumberField(t**2 - t - 6256320, 'a', embedding=aa).objgen()
DiffOps_x, x, Dx = DifferentialOperators(K, 'x')
iint_quadratic_alg = IVP(
    dop = (
        (8680468749131953125000000000000000000000*x**13 
        + (34722222218750000000000000000000*a 
        - 8680555572048611109375000000000000000000)*x**12 
        - 43419899820094632213834375000000000000000*x**11 
        + (
        -173681336093739466250000000000000*a 
        + 43420334110275534609369733125000000000000)*x**10 
        + 86874920665761352031076792873375000000000*x**9 
        + (347503157694622354347850650000000*a 
    def arnoux_yoccoz(genus):
        r"""
        Construct the Arnoux-Yoccoz surface of genus 3 or greater.
        
        This presentation of the surface follows Section 2.3 of 
        Joshua P. Bowman's paper "The Complete Family of Arnoux-Yoccoz 
        Surfaces."
        
        EXAMPLES::

            sage: from flatsurf import *
            sage: s = translation_surfaces.arnoux_yoccoz(4)
            sage: TestSuite(s).run()
            sage: s.is_delaunay_decomposed()
            True
            sage: s = s.canonicalize()
            sage: field=s.base_ring()
            sage: a = field.gen()
            sage: from sage.matrix.constructor import Matrix
            sage: m = Matrix([[a,0],[0,~a]])
            sage: ss = m*s
            sage: ss = ss.canonicalize()
            sage: s.cmp_translation_surface(ss)==0
            True

        The Arnoux-Yoccoz pseudo-Anosov are known to have (minimal) invariant
        foliations with SAF=0::

            sage: S3 = translation_surfaces.arnoux_yoccoz(3)
            sage: Jxx, Jyy, Jxy = S3.j_invariant()
            sage: Jxx.is_zero() and Jyy.is_zero()
            True
            sage: Jxy
            [ 0  2  0]
            [ 2 -2  0]
            [ 0  0  2]

            sage: S4 = translation_surfaces.arnoux_yoccoz(4)
            sage: Jxx, Jyy, Jxy = S4.j_invariant()
            sage: Jxx.is_zero() and Jyy.is_zero()
            True
            sage: Jxy
            [ 0  2  0  0]
            [ 2 -2  0  0]
            [ 0  0  2  2]
            [ 0  0  2  0]
        """
        g=ZZ(genus)
        assert g>=3
        from sage.rings.polynomial.polynomial_ring import polygen
        x = polygen(AA)
        p=sum([x**i for i in xrange(1,g+1)])-1
        cp = AA.common_polynomial(p)
        alpha_AA = AA.polynomial_root(cp, RIF(1/2, 1))
        field=NumberField(alpha_AA.minpoly(),'alpha',embedding=alpha_AA)
        a=field.gen()
        from sage.modules.free_module import VectorSpace
        V=VectorSpace(field,2)
        p=[None for i in xrange(g+1)]
        q=[None for i in xrange(g+1)]
        p[0]=V(( (1-a**g)/2, a**2/(1-a) ))
        q[0]=V(( -a**g/2, a ))
        p[1]=V(( -(a**(g-1)+a**g)/2, (a-a**2+a**3)/(1-a) ))
        p[g]=V(( 1+(a-a**g)/2, (3*a-1-a**2)/(1-a) ))
        for i in xrange(2,g):
            p[i]=V(( (a-a**i)/(1-a) , a/(1-a) ))
        for i in xrange(1,g+1):
            q[i]=V(( (2*a-a**i-a**(i+1))/(2*(1-a)), (a-a**(g-i+2))/(1-a) ))
        from flatsurf.geometry.polygon import Polygons
        P=Polygons(field)
        s = Surface_list(field)
        T = [None] * (2*g+1)
        Tp = [None] * (2*g+1)
        from sage.matrix.constructor import Matrix
        m=Matrix([[1,0],[0,-1]])
        for i in xrange(1,g+1):
            # T_i is (P_0,Q_i,Q_{i-1})
            T[i]=s.add_polygon(P(edges=[ q[i]-p[0], q[i-1]-q[i], p[0]-q[i-1] ]))
            # T_{g+i} is (P_i,Q_{i-1},Q_{i})
            T[g+i]=s.add_polygon(P(edges=[ q[i-1]-p[i], q[i]-q[i-1], p[i]-q[i] ]))
            # T'_i is (P'_0,Q'_{i-1},Q'_i)
            Tp[i]=s.add_polygon(m*s.polygon(T[i]))
            # T'_{g+i} is (P'_i,Q'_i, Q'_{i-1})
            Tp[g+i]=s.add_polygon(m*s.polygon(T[g+i]))
        for i in xrange(1,g):
            s.change_edge_gluing(T[i],0,T[i+1],2)
            s.change_edge_gluing(Tp[i],2,Tp[i+1],0)
        for i in xrange(1,g+1):
            s.change_edge_gluing(T[i],1,T[g+i],1)
            s.change_edge_gluing(Tp[i],1,Tp[g+i],1)
        #P 0 Q 0 is paired with P' 0 Q' 0, ...
        s.change_edge_gluing(T[1],2,Tp[g],2)
        s.change_edge_gluing(Tp[1],0,T[g],0)
        # P1Q1 is paired with P'_g Q_{g-1}
        s.change_edge_gluing(T[g+1],2,Tp[2*g],2)
        s.change_edge_gluing(Tp[g+1],0,T[2*g],0)
        # P1Q0 is paired with P_{g-1} Q_{g-1}
        s.change_edge_gluing(T[g+1],0,T[2*g-1],2)
        s.change_edge_gluing(Tp[g+1],2,Tp[2*g-1],0)
        # PgQg is paired with Q1P2
        s.change_edge_gluing(T[2*g],2,T[g+2],0)
        s.change_edge_gluing(Tp[2*g],0,Tp[g+2],2)
        for i in xrange(2,g-1):
            # PiQi is paired with Q'_i P'_{i+1}
            s.change_edge_gluing(T[g+i],2,Tp[g+i+1],2)
            s.change_edge_gluing(Tp[g+i],0,T[g+i+1],0)
        s.set_immutable()
        return TranslationSurface(s)
    def mcmullen_genus2_prototype(w, h, t, e, rel=0):
        r"""
        McMullen prototypes in the stratum H(2).

        These prototype appear at least in McMullen "Teichmüller curves in genus
        two: Discriminant and spin" (2004). The notation from that paper are
        quadruple ``(a, b, c, e)`` which translates in our notation as
        ``w = b``, ``h = c``, ``t = a`` (and ``e = e``).

        The associated discriminant is `D = e^2 + 4 wh`.

        If ``rel`` is a positive parameter (less than w-lambda) the surface belongs
        to the eigenform locus in H(1,1).

        EXAMPLES::

            sage: from flatsurf import translation_surfaces
            sage: from surface_dynamics import AbelianStratum

            sage: prototypes = {
            ....:      5: [(1,1,0,-1)],
            ....:      8: [(1,1,0,-2), (2,1,0,0)],
            ....:      9: [(2,1,0,-1)],
            ....:     12: [(1,2,0,-2), (2,1,0,-2), (3,1,0,0)],
            ....:     13: [(1,1,0,-3), (3,1,0,-1), (3,1,0,1)],
            ....:     16: [(3,1,0,-2), (4,1,0,0)],
            ....:     17: [(1,2,0,-3), (2,1,0,-3), (2,2,0,-1), (2,2,1,-1), (4,1,0,-1), (4,1,0,1)],
            ....:     20: [(1,1,0,-4), (2,2,1,-2), (4,1,0,-2), (4,1,0,2)],
            ....:     21: [(1,3,0,-3), (3,1,0,-3)],
            ....:     24: [(1,2,0,-4), (2,1,0,-4), (3,2,0,0)],
            ....:     25: [(2,2,0,-3), (2,2,1,-3), (3,2,0,-1), (4,1,0,-3)]}

            sage: for D in sorted(prototypes):
            ....:     for w,h,t,e in prototypes[D]:
            ....:          T = translation_surfaces.mcmullen_genus2_prototype(w,h,t,e)
            ....:          assert T.stratum() == AbelianStratum(2)
            ....:          assert (D.is_square() and T.base_ring() is QQ) or (T.base_ring().polynomial().discriminant() == D)

        An example with some relative homology::

            sage: U8 = translation_surfaces.mcmullen_genus2_prototype(2,1,0,0,1/4)    # discriminant 8
            sage: U12 = translation_surfaces.mcmullen_genus2_prototype(3,1,0,0,3/10)   # discriminant 12

            sage: U8.stratum()
            H_2(1^2)
            sage: U8.base_ring().polynomial().discriminant()
            8
            sage: U8.j_invariant()
            (
                      [4 0]
            (0), (0), [0 2]
            )

            sage: U12.stratum()
            H_2(1^2)
            sage: U12.base_ring().polynomial().discriminant()
            12
            sage: U12.j_invariant()
            (
                      [6 0]
            (0), (0), [0 2]
            )
        """
        w = ZZ(w)
        h = ZZ(h)
        t = ZZ(t)
        e = ZZ(e)
        g = w.gcd(h)
        gg = g.gcd(t).gcd(e)
        if w <= 0 or h <= 0 or t < 0 or t >= g or not g.gcd(t).gcd(
                e).is_one() or e + h >= w:
            raise ValueError("invalid parameters")

        x = polygen(QQ)
        poly = x**2 - e * x - w * h
        if poly.is_irreducible():
            emb = AA.polynomial_root(poly, RIF(0, w))
            K = NumberField(poly, 'l', embedding=emb)
            l = K.gen()
        else:
            K = QQ
            D = e**2 + 4 * w * h
            d = D.sqrt()
            l = (e + d) / 2
        rel = K(rel)

        # (lambda,lambda) square on top
        # twisted (w,0), (t,h)
        s = Surface_list(base_ring=K)
        if rel:
            if rel < 0 or rel > w - l:
                raise ValueError("invalid rel argument")
            s.add_polygon(
                polygons(vertices=[(0, 0), (l, 0), (l + rel, l), (rel, l)],
                         ring=K))
            s.add_polygon(
                polygons(vertices=[(0, 0), (rel, 0), (rel + l, 0), (w, 0),
                                   (w + t, h), (l + rel + t, h), (t + l, h),
                                   (t, h)],
                         ring=K))
            s.set_edge_pairing(0, 1, 0, 3)
            s.set_edge_pairing(0, 0, 1, 6)
            s.set_edge_pairing(0, 2, 1, 1)
            s.set_edge_pairing(1, 2, 1, 4)
            s.set_edge_pairing(1, 3, 1, 7)
            s.set_edge_pairing(1, 0, 1, 5)
        else:
            s.add_polygon(
                polygons(vertices=[(0, 0), (l, 0), (l, l), (0, l)], ring=K))
            s.add_polygon(
                polygons(vertices=[(0, 0), (l, 0), (w, 0), (w + t, h),
                                   (l + t, h), (t, h)],
                         ring=K))
            s.set_edge_pairing(0, 1, 0, 3)
            s.set_edge_pairing(0, 0, 1, 4)
            s.set_edge_pairing(0, 2, 1, 0)
            s.set_edge_pairing(1, 1, 1, 3)
            s.set_edge_pairing(1, 2, 1, 5)
        s.set_immutable()
        return TranslationSurface(s)
    def arnoux_yoccoz(genus):
        r"""
        Construct the Arnoux-Yoccoz surface of genus 3 or greater.

        This presentation of the surface follows Section 2.3 of
        Joshua P. Bowman's paper "The Complete Family of Arnoux-Yoccoz
        Surfaces."

        EXAMPLES::

            sage: from flatsurf import *
            sage: s = translation_surfaces.arnoux_yoccoz(4)
            sage: TestSuite(s).run()
            sage: s.is_delaunay_decomposed()
            True
            sage: s = s.canonicalize()
            sage: field=s.base_ring()
            sage: a = field.gen()
            sage: from sage.matrix.constructor import Matrix
            sage: m = Matrix([[a,0],[0,~a]])
            sage: ss = m*s
            sage: ss = ss.canonicalize()
            sage: s.cmp(ss) == 0
            True

        The Arnoux-Yoccoz pseudo-Anosov are known to have (minimal) invariant
        foliations with SAF=0::

            sage: S3 = translation_surfaces.arnoux_yoccoz(3)
            sage: Jxx, Jyy, Jxy = S3.j_invariant()
            sage: Jxx.is_zero() and Jyy.is_zero()
            True
            sage: Jxy
            [ 0  2  0]
            [ 2 -2  0]
            [ 0  0  2]

            sage: S4 = translation_surfaces.arnoux_yoccoz(4)
            sage: Jxx, Jyy, Jxy = S4.j_invariant()
            sage: Jxx.is_zero() and Jyy.is_zero()
            True
            sage: Jxy
            [ 0  2  0  0]
            [ 2 -2  0  0]
            [ 0  0  2  2]
            [ 0  0  2  0]
        """
        g = ZZ(genus)
        assert g >= 3
        x = polygen(AA)
        p = sum([x**i for i in range(1, g + 1)]) - 1
        cp = AA.common_polynomial(p)
        alpha_AA = AA.polynomial_root(cp, RIF(1 / 2, 1))
        field = NumberField(alpha_AA.minpoly(), 'alpha', embedding=alpha_AA)
        a = field.gen()
        V = VectorSpace(field, 2)
        p = [None for i in range(g + 1)]
        q = [None for i in range(g + 1)]
        p[0] = V(((1 - a**g) / 2, a**2 / (1 - a)))
        q[0] = V((-a**g / 2, a))
        p[1] = V((-(a**(g - 1) + a**g) / 2, (a - a**2 + a**3) / (1 - a)))
        p[g] = V((1 + (a - a**g) / 2, (3 * a - 1 - a**2) / (1 - a)))
        for i in range(2, g):
            p[i] = V(((a - a**i) / (1 - a), a / (1 - a)))
        for i in range(1, g + 1):
            q[i] = V(((2 * a - a**i - a**(i + 1)) / (2 * (1 - a)),
                      (a - a**(g - i + 2)) / (1 - a)))
        P = ConvexPolygons(field)
        s = Surface_list(field)
        T = [None] * (2 * g + 1)
        Tp = [None] * (2 * g + 1)
        from sage.matrix.constructor import Matrix
        m = Matrix([[1, 0], [0, -1]])
        for i in range(1, g + 1):
            # T_i is (P_0,Q_i,Q_{i-1})
            T[i] = s.add_polygon(
                P(edges=[q[i] - p[0], q[i - 1] - q[i], p[0] - q[i - 1]]))
            # T_{g+i} is (P_i,Q_{i-1},Q_{i})
            T[g + i] = s.add_polygon(
                P(edges=[q[i - 1] - p[i], q[i] - q[i - 1], p[i] - q[i]]))
            # T'_i is (P'_0,Q'_{i-1},Q'_i)
            Tp[i] = s.add_polygon(m * s.polygon(T[i]))
            # T'_{g+i} is (P'_i,Q'_i, Q'_{i-1})
            Tp[g + i] = s.add_polygon(m * s.polygon(T[g + i]))
        for i in range(1, g):
            s.change_edge_gluing(T[i], 0, T[i + 1], 2)
            s.change_edge_gluing(Tp[i], 2, Tp[i + 1], 0)
        for i in range(1, g + 1):
            s.change_edge_gluing(T[i], 1, T[g + i], 1)
            s.change_edge_gluing(Tp[i], 1, Tp[g + i], 1)
        #P 0 Q 0 is paired with P' 0 Q' 0, ...
        s.change_edge_gluing(T[1], 2, Tp[g], 2)
        s.change_edge_gluing(Tp[1], 0, T[g], 0)
        # P1Q1 is paired with P'_g Q_{g-1}
        s.change_edge_gluing(T[g + 1], 2, Tp[2 * g], 2)
        s.change_edge_gluing(Tp[g + 1], 0, T[2 * g], 0)
        # P1Q0 is paired with P_{g-1} Q_{g-1}
        s.change_edge_gluing(T[g + 1], 0, T[2 * g - 1], 2)
        s.change_edge_gluing(Tp[g + 1], 2, Tp[2 * g - 1], 0)
        # PgQg is paired with Q1P2
        s.change_edge_gluing(T[2 * g], 2, T[g + 2], 0)
        s.change_edge_gluing(Tp[2 * g], 0, Tp[g + 2], 2)
        for i in range(2, g - 1):
            # PiQi is paired with Q'_i P'_{i+1}
            s.change_edge_gluing(T[g + i], 2, Tp[g + i + 1], 2)
            s.change_edge_gluing(Tp[g + i], 0, T[g + i + 1], 0)
        s.set_immutable()
        return TranslationSurface(s)