def extension(self, poly, names, check=True, embedding=None): """ EXAMPLES: We make a single absolute extension:: sage: K.<a> = QQ.extension(x^3 + 5); K Number Field in a with defining polynomial x^3 + 5 We make an extension generated by roots of two polynomials:: sage: K.<a,b> = QQ.extension([x^3 + 5, x^2 + 3]); K Number Field in a with defining polynomial x^3 + 5 over its base field sage: b^2 -3 sage: a^3 -5 """ from sage.rings.number_field.all import NumberField return NumberField(poly, names=names, check=check, embedding=embedding)
def splitting_field(poly, name, map=False, degree_multiple=None, abort_degree=None, simplify=True, simplify_all=False): r""" Compute the splitting field of a given polynomial, defined over a number field. INPUT: - ``poly`` -- a monic polynomial over a number field - ``name`` -- a variable name for the number field - ``map`` -- (default: ``False``) also return an embedding of ``poly`` into the resulting field. Note that computing this embedding might be expensive. - ``degree_multiple`` -- a multiple of the absolute degree of the splitting field. If ``degree_multiple`` equals the actual degree, this can enormously speed up the computation. - ``abort_degree`` -- abort by raising a :class:`SplittingFieldAbort` if it can be determined that the absolute degree of the splitting field is strictly larger than ``abort_degree``. - ``simplify`` -- (default: ``True``) during the algorithm, try to find a simpler defining polynomial for the intermediate number fields using PARI's ``polred()``. This usually speeds up the computation but can also considerably slow it down. Try and see what works best in the given situation. - ``simplify_all`` -- (default: ``False``) If ``True``, simplify intermediate fields and also the resulting number field. OUTPUT: If ``map`` is ``False``, the splitting field as an absolute number field. If ``map`` is ``True``, a tuple ``(K, phi)`` where ``phi`` is an embedding of the base field in ``K``. EXAMPLES:: sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = (x^3 + 2).splitting_field(); K Number Field in a with defining polynomial x^6 + 3*x^5 + 6*x^4 + 11*x^3 + 12*x^2 - 3*x + 1 sage: K.<a> = (x^3 - 3*x + 1).splitting_field(); K Number Field in a with defining polynomial x^3 - 3*x + 1 The ``simplify`` and ``simplify_all`` flags usually yield fields defined by polynomials with smaller coefficients. By default, ``simplify`` is True and ``simplify_all`` is False. :: sage: (x^4 - x + 1).splitting_field('a', simplify=False) Number Field in a with defining polynomial x^24 - 2780*x^22 + 2*x^21 + 3527512*x^20 - 2876*x^19 - 2701391985*x^18 + 945948*x^17 + 1390511639677*x^16 + 736757420*x^15 - 506816498313560*x^14 - 822702898220*x^13 + 134120588299548463*x^12 + 362240696528256*x^11 - 25964582366880639486*x^10 - 91743672243419990*x^9 + 3649429473447308439427*x^8 + 14310332927134072336*x^7 - 363192569823568746892571*x^6 - 1353403793640477725898*x^5 + 24293393281774560140427565*x^4 + 70673814899934142357628*x^3 - 980621447508959243128437933*x^2 - 1539841440617805445432660*x + 18065914012013502602456565991 sage: (x^4 - x + 1).splitting_field('a', simplify=True) Number Field in a with defining polynomial x^24 + 8*x^23 - 32*x^22 - 310*x^21 + 540*x^20 + 4688*x^19 - 6813*x^18 - 32380*x^17 + 49525*x^16 + 102460*x^15 - 129944*x^14 - 287884*x^13 + 372727*x^12 + 150624*x^11 - 110530*x^10 - 566926*x^9 + 1062759*x^8 - 779940*x^7 + 863493*x^6 - 1623578*x^5 + 1759513*x^4 - 955624*x^3 + 459975*x^2 - 141948*x + 53919 sage: (x^4 - x + 1).splitting_field('a', simplify_all=True) Number Field in a with defining polynomial x^24 - 3*x^23 + 2*x^22 - x^20 + 4*x^19 + 32*x^18 - 35*x^17 - 92*x^16 + 49*x^15 + 163*x^14 - 15*x^13 - 194*x^12 - 15*x^11 + 163*x^10 + 49*x^9 - 92*x^8 - 35*x^7 + 32*x^6 + 4*x^5 - x^4 + 2*x^2 - 3*x + 1 Reducible polynomials also work:: sage: pol = (x^4 - 1)*(x^2 + 1/2)*(x^2 + 1/3) sage: pol.splitting_field('a', simplify_all=True) Number Field in a with defining polynomial x^8 - x^4 + 1 Relative situation:: sage: R.<x> = PolynomialRing(QQ) sage: K.<a> = NumberField(x^3 + 2) sage: S.<t> = PolynomialRing(K) sage: L.<b> = (t^2 - a).splitting_field() sage: L Number Field in b with defining polynomial t^6 + 2 With ``map=True``, we also get the embedding of the base field into the splitting field:: sage: L.<b>, phi = (t^2 - a).splitting_field(map=True) sage: phi Ring morphism: From: Number Field in a with defining polynomial x^3 + 2 To: Number Field in b with defining polynomial t^6 + 2 Defn: a |--> b^2 sage: (x^4 - x + 1).splitting_field('a', simplify_all=True, map=True)[1] Ring morphism: From: Rational Field To: Number Field in a with defining polynomial x^24 - 3*x^23 + 2*x^22 - x^20 + 4*x^19 + 32*x^18 - 35*x^17 - 92*x^16 + 49*x^15 + 163*x^14 - 15*x^13 - 194*x^12 - 15*x^11 + 163*x^10 + 49*x^9 - 92*x^8 - 35*x^7 + 32*x^6 + 4*x^5 - x^4 + 2*x^2 - 3*x + 1 Defn: 1 |--> 1 We can enable verbose messages:: sage: from sage.misc.verbose import set_verbose sage: set_verbose(2) sage: K.<a> = (x^3 - x + 1).splitting_field() verbose 1 (...: splitting_field.py, splitting_field) Starting field: y verbose 1 (...: splitting_field.py, splitting_field) SplittingData to factor: [(3, 0)] verbose 2 (...: splitting_field.py, splitting_field) Done factoring (time = ...) verbose 1 (...: splitting_field.py, splitting_field) SplittingData to handle: [(2, 2), (3, 3)] verbose 1 (...: splitting_field.py, splitting_field) Bounds for absolute degree: [6, 6] verbose 2 (...: splitting_field.py, splitting_field) Handling polynomial x^2 + 23 verbose 1 (...: splitting_field.py, splitting_field) New field before simplifying: x^2 + 23 (time = ...) verbose 1 (...: splitting_field.py, splitting_field) New field: y^2 - y + 6 (time = ...) verbose 2 (...: splitting_field.py, splitting_field) Converted polynomials to new field (time = ...) verbose 1 (...: splitting_field.py, splitting_field) SplittingData to factor: [] verbose 2 (...: splitting_field.py, splitting_field) Done factoring (time = ...) verbose 1 (...: splitting_field.py, splitting_field) SplittingData to handle: [(3, 3)] verbose 1 (...: splitting_field.py, splitting_field) Bounds for absolute degree: [6, 6] verbose 2 (...: splitting_field.py, splitting_field) Handling polynomial x^3 - x + 1 verbose 1 (...: splitting_field.py, splitting_field) New field: y^6 + 3*y^5 + 19*y^4 + 35*y^3 + 127*y^2 + 73*y + 271 (time = ...) sage: set_verbose(0) Try all Galois groups in degree 4. We use a quadratic base field such that ``polgalois()`` cannot be used:: sage: R.<x> = PolynomialRing(QuadraticField(-11)) sage: C2C2pol = x^4 - 10*x^2 + 1 sage: C2C2pol.splitting_field('x') Number Field in x with defining polynomial x^8 + 24*x^6 + 608*x^4 + 9792*x^2 + 53824 sage: C4pol = x^4 + x^3 + x^2 + x + 1 sage: C4pol.splitting_field('x') Number Field in x with defining polynomial x^8 - x^7 - 2*x^6 + 5*x^5 + x^4 + 15*x^3 - 18*x^2 - 27*x + 81 sage: D8pol = x^4 - 2 sage: D8pol.splitting_field('x') Number Field in x with defining polynomial x^16 + 8*x^15 + 68*x^14 + 336*x^13 + 1514*x^12 + 5080*x^11 + 14912*x^10 + 35048*x^9 + 64959*x^8 + 93416*x^7 + 88216*x^6 + 41608*x^5 - 25586*x^4 - 60048*x^3 - 16628*x^2 + 12008*x + 34961 sage: A4pol = x^4 - 4*x^3 + 14*x^2 - 28*x + 21 sage: A4pol.splitting_field('x') Number Field in x with defining polynomial x^24 - 20*x^23 + 290*x^22 - 3048*x^21 + 26147*x^20 - 186132*x^19 + 1130626*x^18 - 5913784*x^17 + 26899345*x^16 - 106792132*x^15 + 371066538*x^14 - 1127792656*x^13 + 2991524876*x^12 - 6888328132*x^11 + 13655960064*x^10 - 23000783036*x^9 + 32244796382*x^8 - 36347834476*x^7 + 30850889884*x^6 - 16707053128*x^5 + 1896946429*x^4 + 4832907884*x^3 - 3038258802*x^2 - 200383596*x + 593179173 sage: S4pol = x^4 + x + 1 sage: S4pol.splitting_field('x') Number Field in x with defining polynomial x^48 ... Some bigger examples:: sage: R.<x> = PolynomialRing(QQ) sage: pol15 = chebyshev_T(31, x) - 1 # 2^30*(x-1)*minpoly(cos(2*pi/31))^2 sage: pol15.splitting_field('a') Number Field in a with defining polynomial x^15 - x^14 - 14*x^13 + 13*x^12 + 78*x^11 - 66*x^10 - 220*x^9 + 165*x^8 + 330*x^7 - 210*x^6 - 252*x^5 + 126*x^4 + 84*x^3 - 28*x^2 - 8*x + 1 sage: pol48 = x^6 - 4*x^4 + 12*x^2 - 12 sage: pol48.splitting_field('a') Number Field in a with defining polynomial x^48 ... If you somehow know the degree of the field in advance, you should add a ``degree_multiple`` argument. This can speed up the computation, in particular for polynomials of degree >= 12 or for relative extensions:: sage: pol15.splitting_field('a', degree_multiple=15) Number Field in a with defining polynomial x^15 + x^14 - 14*x^13 - 13*x^12 + 78*x^11 + 66*x^10 - 220*x^9 - 165*x^8 + 330*x^7 + 210*x^6 - 252*x^5 - 126*x^4 + 84*x^3 + 28*x^2 - 8*x - 1 A value for ``degree_multiple`` which isn't actually a multiple of the absolute degree of the splitting field can either result in a wrong answer or the following exception:: sage: pol48.splitting_field('a', degree_multiple=20) Traceback (most recent call last): ... ValueError: inconsistent degree_multiple in splitting_field() Compute the Galois closure as the splitting field of the defining polynomial:: sage: R.<x> = PolynomialRing(QQ) sage: pol48 = x^6 - 4*x^4 + 12*x^2 - 12 sage: K.<a> = NumberField(pol48) sage: L.<b> = pol48.change_ring(K).splitting_field() sage: L Number Field in b with defining polynomial x^48 ... Try all Galois groups over `\QQ` in degree 5 except for `S_5` (the latter is infeasible with the current implementation):: sage: C5pol = x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1 sage: C5pol.splitting_field('x') Number Field in x with defining polynomial x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1 sage: D10pol = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1 sage: D10pol.splitting_field('x') Number Field in x with defining polynomial x^10 - 28*x^8 + 216*x^6 - 681*x^4 + 902*x^2 - 401 sage: AGL_1_5pol = x^5 - 2 sage: AGL_1_5pol.splitting_field('x') Number Field in x with defining polynomial x^20 + 10*x^19 + 55*x^18 + 210*x^17 + 595*x^16 + 1300*x^15 + 2250*x^14 + 3130*x^13 + 3585*x^12 + 3500*x^11 + 2965*x^10 + 2250*x^9 + 1625*x^8 + 1150*x^7 + 750*x^6 + 400*x^5 + 275*x^4 + 100*x^3 + 75*x^2 + 25 sage: A5pol = x^5 - x^4 + 2*x^2 - 2*x + 2 sage: A5pol.splitting_field('x') Number Field in x with defining polynomial x^60 ... We can use the ``abort_degree`` option if we don't want to compute fields of too large degree (this can be used to check whether the splitting field has small degree):: sage: (x^5+x+3).splitting_field('b', abort_degree=119) Traceback (most recent call last): ... SplittingFieldAbort: degree of splitting field equals 120 sage: (x^10+x+3).splitting_field('b', abort_degree=60) # long time (10s on sage.math, 2014) Traceback (most recent call last): ... SplittingFieldAbort: degree of splitting field is a multiple of 180 Use the ``degree_divisor`` attribute to recover the divisor of the degree of the splitting field or ``degree_multiple`` to recover a multiple:: sage: from sage.rings.number_field.splitting_field import SplittingFieldAbort sage: try: # long time (4s on sage.math, 2014) ....: (x^8+x+1).splitting_field('b', abort_degree=60, simplify=False) ....: except SplittingFieldAbort as e: ....: print(e.degree_divisor) ....: print(e.degree_multiple) 120 1440 TESTS:: sage: from sage.rings.number_field.splitting_field import splitting_field sage: splitting_field(polygen(QQ), name='x', map=True, simplify_all=True) (Number Field in x with defining polynomial x, Ring morphism: From: Rational Field To: Number Field in x with defining polynomial x Defn: 1 |--> 1) """ from sage.misc.all import cputime from sage.misc.verbose import verbose degree_multiple = Integer(degree_multiple or 0) abort_degree = Integer(abort_degree or 0) # Kpol = PARI polynomial in y defining the extension found so far F = poly.base_ring() if is_RationalField(F): Kpol = pari("'y") else: Kpol = F.pari_polynomial("y") # Fgen = the generator of F as element of Q[y]/Kpol # (only needed if map=True) if map: Fgen = F.gen().__pari__() verbose("Starting field: %s" % Kpol) # L and Lred are lists of SplittingData. # L contains polynomials which are irreducible over K, # Lred contains polynomials which need to be factored. L = [] Lred = [SplittingData(poly._pari_with_name(), degree_multiple)] # Main loop, handle polynomials one by one while True: # Absolute degree of current field K absolute_degree = Integer(Kpol.poldegree()) # Compute minimum relative degree of splitting field rel_degree_divisor = Integer(1) for splitting in L: rel_degree_divisor = rel_degree_divisor.lcm(splitting.poldegree()) # Check for early aborts abort_rel_degree = abort_degree // absolute_degree if abort_rel_degree and rel_degree_divisor > abort_rel_degree: raise SplittingFieldAbort(absolute_degree * rel_degree_divisor, degree_multiple) # First, factor polynomials in Lred and store the result in L verbose("SplittingData to factor: %s" % [s._repr_tuple() for s in Lred]) t = cputime() for splitting in Lred: m = splitting.dm.gcd(degree_multiple).gcd( factorial(splitting.poldegree())) if m == 1: continue factors = Kpol.nffactor(splitting.pol)[0] for q in factors: d = q.poldegree() fac = factorial(d) # Multiple of the degree of the splitting field of q, # note that the degree equals fac iff the Galois group is S_n. mq = m.gcd(fac) if mq == 1: continue # Multiple of the degree of the splitting field of q # over the field defined by adding square root of the # discriminant. # If the Galois group is contained in A_n, then mq_alt is # also the degree multiple over the current field K. # Here, we have equality if the Galois group is A_n. mq_alt = mq.gcd(fac // 2) # If we are over Q, then use PARI's polgalois() to compute # these degrees exactly. if absolute_degree == 1: try: G = q.polgalois() except PariError: pass else: mq = Integer(G[0]) mq_alt = mq // 2 if (G[1] == -1) else mq # In degree 4, use the cubic resolvent to refine the # degree bounds. if d == 4 and mq >= 12: # mq equals 12 or 24 # Compute cubic resolvent a0, a1, a2, a3, a4 = (q / q.pollead()).Vecrev() assert a4 == 1 cubicpol = pari([ 4 * a0 * a2 - a1 * a1 - a0 * a3 * a3, a1 * a3 - 4 * a0, -a2, 1 ]).Polrev() cubicfactors = Kpol.nffactor(cubicpol)[0] if len(cubicfactors) == 1: # A4 or S4 # After adding a root of the cubic resolvent, # the degree of the extension defined by q # is a factor 3 smaller. L.append(SplittingData(cubicpol, 3)) rel_degree_divisor = rel_degree_divisor.lcm(3) mq = mq // 3 # 4 or 8 mq_alt = 4 elif len(cubicfactors) == 2: # C4 or D8 # The irreducible degree 2 factor is # equivalent to x^2 - q.poldisc(). discpol = cubicfactors[1] L.append(SplittingData(discpol, 2)) mq = mq_alt = 4 else: # C2 x C2 mq = mq_alt = 4 if mq > mq_alt >= 3: # Add quadratic resolvent x^2 - D to decrease # the degree multiple by a factor 2. discpol = pari([-q.poldisc(), 0, 1]).Polrev() discfactors = Kpol.nffactor(discpol)[0] if len(discfactors) == 1: # Discriminant is not a square L.append(SplittingData(discpol, 2)) rel_degree_divisor = rel_degree_divisor.lcm(2) mq = mq_alt L.append(SplittingData(q, mq)) rel_degree_divisor = rel_degree_divisor.lcm(q.poldegree()) if abort_rel_degree and rel_degree_divisor > abort_rel_degree: raise SplittingFieldAbort( absolute_degree * rel_degree_divisor, degree_multiple) verbose("Done factoring", t, level=2) if len(L) == 0: # Nothing left to do break # Recompute absolute degree multiple new_degree_multiple = absolute_degree for splitting in L: new_degree_multiple *= splitting.dm degree_multiple = new_degree_multiple.gcd(degree_multiple) # Absolute degree divisor degree_divisor = rel_degree_divisor * absolute_degree # Sort according to degree to handle low degrees first L.sort(key=lambda x: x.key()) verbose("SplittingData to handle: %s" % [s._repr_tuple() for s in L]) verbose("Bounds for absolute degree: [%s, %s]" % (degree_divisor, degree_multiple)) # Check consistency if degree_multiple % degree_divisor != 0: raise ValueError( "inconsistent degree_multiple in splitting_field()") for splitting in L: # The degree of the splitting field must be a multiple of # the degree of the polynomial. Only do this check for # SplittingData with minimal dm, because the higher dm are # defined as relative degree over the splitting field of # the polynomials with lesser dm. if splitting.dm > L[0].dm: break if splitting.dm % splitting.poldegree() != 0: raise ValueError( "inconsistent degree_multiple in splitting_field()") # Add a root of f = L[0] to construct the field N = K[x]/f(x) splitting = L[0] f = splitting.pol verbose("Handling polynomial %s" % (f.lift()), level=2) t = cputime() Npol, KtoN, k = Kpol.rnfequation(f, flag=1) # Make Npol monic integral primitive, store in Mpol # (after this, we don't need Npol anymore, only Mpol) Mdiv = pari(1) Mpol = Npol while True: denom = Integer(Mpol.pollead()) if denom == 1: break denom = pari(denom.factor().radical_value()) Mpol = (Mpol * (denom**Mpol.poldegree())).subst( "x", pari([0, 1 / denom]).Polrev("x")) Mpol /= Mpol.content() Mdiv *= denom # We are finished for sure if we hit the degree bound finished = (Mpol.poldegree() >= degree_multiple) if simplify_all or (simplify and not finished): # Find a simpler defining polynomial Lpol for Mpol verbose("New field before simplifying: %s" % Mpol, t) t = cputime() M = Mpol.polred(flag=3) n = len(M[0]) - 1 Lpol = M[1][n].change_variable_name("y") LtoM = M[0][n].change_variable_name("y").Mod( Mpol.change_variable_name("y")) MtoL = LtoM.modreverse() else: # Lpol = Mpol Lpol = Mpol.change_variable_name("y") MtoL = pari("'y") NtoL = MtoL / Mdiv KtoL = KtoN.lift().subst("x", NtoL).Mod(Lpol) Kpol = Lpol # New Kpol (for next iteration) verbose("New field: %s" % Kpol, t) if map: t = cputime() Fgen = Fgen.lift().subst("y", KtoL) verbose("Computed generator of F in K", t, level=2) if finished: break t = cputime() # Convert f and elements of L from K to L and store in L # (if the polynomial is certain to remain irreducible) or Lred. Lold = L[1:] L = [] Lred = [] # First add f divided by the linear factor we obtained, # mg is the new degree multiple. mg = splitting.dm // f.poldegree() if mg > 1: g = [c.subst("y", KtoL).Mod(Lpol) for c in f.Vecrev().lift()] g = pari(g).Polrev() g /= pari([k * KtoL - NtoL, 1]).Polrev() # divide linear factor Lred.append(SplittingData(g, mg)) for splitting in Lold: g = [c.subst("y", KtoL) for c in splitting.pol.Vecrev().lift()] g = pari(g).Polrev() mg = splitting.dm if Integer(g.poldegree()).gcd( f.poldegree()) == 1: # linearly disjoint fields L.append(SplittingData(g, mg)) else: Lred.append(SplittingData(g, mg)) verbose("Converted polynomials to new field", t, level=2) # Convert Kpol to Sage and construct the absolute number field Kpol = PolynomialRing(RationalField(), name=poly.variable_name())(Kpol / Kpol.pollead()) K = NumberField(Kpol, name) if map: return K, F.hom(Fgen, K) else: return K