示例#1
0
 def __init__(self, J):
     """
     """
     R = J.base_ring()
     PP = ProjectiveSpace(3, R, ["X0", "X1", "X2", "X3"])
     X0, X1, X2, X3 = PP.gens()
     C = J.curve()
     f, h = C.hyperelliptic_polynomials()
     a12 = f[0]
     a10 = f[1]
     a8 = f[2]
     a6 = f[3]
     a4 = f[4]
     a2 = f[5]
     a0 = f[6]
     if h != 0:
         c6 = h[0]
         c4 = h[1]
         c2 = h[2]
         c0 = h[3]
         a12, a10, a8, a6, a4, a2, a0 = \
              (4*a12 + c6**2,
               4*a10 + 2*c4*c6,
               4*a8 + 2*c2*c6 + c4**2,
               4*a6 + 2*c0*c6 + 2*c2*c4,
               4*a4 + 2*c0*c4 + c2**2,
               4*a2 + 2*c0*c2,
               4*a0 + c0**2)
     F = \
       (-4*a8*a12 + a10**2)*X0**4 + \
       -4*a6*a12*X0**3*X1 + \
       -2*a6*a10*X0**3*X2 + \
       -4*a12*X0**3*X3 + \
       -4*a4*a12*X0**2*X1**2 + \
       (4*a2*a12 - 4*a4*a10)*X0**2*X1*X2 + \
       -2*a10*X0**2*X1*X3 + \
       (-4*a0*a12 + 2*a2*a10 - 4*a4*a8 + a6**2)*X0**2*X2**2 + \
       -4*a8*X0**2*X2*X3 + \
       -4*a2*a12*X0*X1**3 + \
       (8*a0*a12 - 4*a2*a10)*X0*X1**2*X2 + \
       (4*a0*a10 - 4*a2*a8)*X0*X1*X2**2 + \
       -2*a6*X0*X1*X2*X3 + \
       -2*a2*a6*X0*X2**3 + \
       -4*a4*X0*X2**2*X3 + \
       -4*X0*X2*X3**2 + \
       -4*a0*a12*X1**4 + \
       -4*a0*a10*X1**3*X2 + \
       -4*a0*a8*X1**2*X2**2 + \
       X1**2*X3**2 + \
       -4*a0*a6*X1*X2**3 + \
       -2*a2*X1*X2**2*X3 + \
       (-4*a0*a4 + a2**2)*X2**4 + \
       -4*a0*X2**3*X3
     AlgebraicScheme_subscheme_projective.__init__(self, PP, F)
     X, Y, Z = C.ambient_space().gens()
     if a0 == 0:
         a0 = a2
     phi = Hom(C, self)([0, Z**2, X * Z, a0 * X**2], Schemes())
     C._kummer_morphism = phi
     J._kummer_surface = self
示例#2
0
 def __init__(self,J):
     """
     """
     R = J.base_ring()
     PP = ProjectiveSpace(3,R,["X0","X1","X2","X3"])
     X0, X1, X2, X3 = PP.gens()
     C = J.curve()
     f, h = C.hyperelliptic_polynomials()
     a12 = f[0]; a10 = f[1]; a8 = f[2];
     a6 = f[3]; a4 = f[4]; a2 = f[5]; a0 = f[6]
     if h != 0:
         c6 = h[0]; c4 = h[1]; c2 = h[2]; c0 = h[3]
         a12, a10, a8, a6, a4, a2, a0 = \
              (4*a12 + c6**2,
               4*a10 + 2*c4*c6,
               4*a8 + 2*c2*c6 + c4**2,
               4*a6 + 2*c0*c6 + 2*c2*c4,
               4*a4 + 2*c0*c4 + c2**2,
               4*a2 + 2*c0*c2,
               4*a0 + c0**2)
     F = \
       (-4*a8*a12 + a10**2)*X0**4 + \
       -4*a6*a12*X0**3*X1 + \
       -2*a6*a10*X0**3*X2 + \
       -4*a12*X0**3*X3 + \
       -4*a4*a12*X0**2*X1**2 + \
       (4*a2*a12 - 4*a4*a10)*X0**2*X1*X2 + \
       -2*a10*X0**2*X1*X3 + \
       (-4*a0*a12 + 2*a2*a10 - 4*a4*a8 + a6**2)*X0**2*X2**2 + \
       -4*a8*X0**2*X2*X3 + \
       -4*a2*a12*X0*X1**3 + \
       (8*a0*a12 - 4*a2*a10)*X0*X1**2*X2 + \
       (4*a0*a10 - 4*a2*a8)*X0*X1*X2**2 + \
       -2*a6*X0*X1*X2*X3 + \
       -2*a2*a6*X0*X2**3 + \
       -4*a4*X0*X2**2*X3 + \
       -4*X0*X2*X3**2 + \
       -4*a0*a12*X1**4 + \
       -4*a0*a10*X1**3*X2 + \
       -4*a0*a8*X1**2*X2**2 + \
       X1**2*X3**2 + \
       -4*a0*a6*X1*X2**3 + \
       -2*a2*X1*X2**2*X3 + \
       (-4*a0*a4 + a2**2)*X2**4 + \
       -4*a0*X2**3*X3
     AlgebraicScheme_subscheme_projective.__init__(self, PP, F)
     X, Y, Z = C.ambient_space().gens()
     if a0 ==0:
         a0 = a2
     phi = Hom(C,self)([0,Z**2,X*Z,a0*X**2],Schemes())
     C._kummer_morphism = phi
     J._kummer_surface = self
示例#3
0
    def subscheme(self, X):
        """
        Return the closed subscheme defined by ``X``.

        INPUT:

        -  ``X`` - a list or tuple of equations.

        EXAMPLES::

            sage: A.<x,y,z> = ProjectiveSpace(2, QQ)
            sage: X = A.subscheme([x*z^2, y^2*z, x*y^2]); X
            Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
              x*z^2,
              y^2*z,
              x*y^2
            sage: X.defining_polynomials ()
            (x*z^2, y^2*z, x*y^2)
            sage: I = X.defining_ideal(); I
            Ideal (x*z^2, y^2*z, x*y^2) of Multivariate Polynomial Ring in x, y, z over Rational Field
            sage: I.groebner_basis()
            [x*y^2, y^2*z,  x*z^2]
            sage: X.dimension()
            0
            sage: X.base_ring()
            Rational Field
            sage: X.base_scheme()
            Spectrum of Rational Field
            sage: X.structure_morphism()
            Scheme morphism:
              From: Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
              x*z^2,
              y^2*z,
              x*y^2
              To:   Spectrum of Rational Field
              Defn: Structure map

            sage: TestSuite(X).run(skip=["_test_an_element", "_test_elements",\
            "_test_elements_eq", "_test_some_elements", "_test_elements_eq_reflexive",\
            "_test_elements_eq_symmetric", "_test_elements_eq_transitive",\
            "_test_elements_neq"])
        """
        from sage.schemes.generic.algebraic_scheme import AlgebraicScheme_subscheme_projective
        return AlgebraicScheme_subscheme_projective(self, X)
示例#4
0
    def affine_patch(self, i, AA=None):
        r"""
        Return the i-th affine patch of this projective curve.

        INPUT:

        - ``i`` -- affine coordinate chart of the projective ambient space of this curve to compute affine patch
          with respect to.

        - ``AA`` -- (default: None) ambient affine space, this is constructed if it is not given.

        OUTPUT:

        - a curve in affine space.

        EXAMPLES::

            sage: P.<x,y,z,w> = ProjectiveSpace(CC, 3)
            sage: C = Curve([y*z - x^2, w^2 - x*y], P)
            sage: C.affine_patch(0)
            Affine Curve over Complex Field with 53 bits of precision defined by
            x0*x1 - 1.00000000000000, x2^2 - x0

        ::

            sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
            sage: C = Curve(x^3 - x^2*y + y^3 - x^2*z, P)
            sage: C.affine_patch(1)
            Affine Plane Curve over Rational Field defined by x0^3 - x0^2*x1 - x0^2 + 1

        ::

            sage: A.<x,y> = AffineSpace(QQ, 2)
            sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
            sage: C = Curve([u^2 - v^2], P)
            sage: C.affine_patch(1, A).ambient_space() == A
            True
        """
        from .constructor import Curve
        return Curve(
            AlgebraicScheme_subscheme_projective.affine_patch(self, i, AA))
示例#5
0
    def affine_patch(self, i, AA=None):
        r"""
        Return the i-th affine patch of this projective curve.

        INPUT:

        - ``i`` -- affine coordinate chart of the projective ambient space of this curve to compute affine patch
          with respect to.

        - ``AA`` -- (default: None) ambient affine space, this is constructed if it is not given.

        OUTPUT:

        - a curve in affine space.

        EXAMPLES::

            sage: P.<x,y,z,w> = ProjectiveSpace(CC, 3)
            sage: C = Curve([y*z - x^2, w^2 - x*y], P)
            sage: C.affine_patch(0)
            Affine Curve over Complex Field with 53 bits of precision defined by
            x0*x1 - 1.00000000000000, x2^2 - x0

        ::

            sage: P.<x,y,z> = ProjectiveSpace(QQ, 2)
            sage: C = Curve(x^3 - x^2*y + y^3 - x^2*z, P)
            sage: C.affine_patch(1)
            Affine Plane Curve over Rational Field defined by x0^3 - x0^2*x1 - x0^2 + 1

        ::

            sage: A.<x,y> = AffineSpace(QQ, 2)
            sage: P.<u,v,w> = ProjectiveSpace(QQ, 2)
            sage: C = Curve([u^2 - v^2], P)
            sage: C.affine_patch(1, A).ambient_space() == A
            True
        """
        from .constructor import Curve
        return Curve(AlgebraicScheme_subscheme_projective.affine_patch(self, i, AA))