def _repr_(self):
        """
        Return a string representation of this system.

        EXAMPLE::

            sage: P.<a,b,c,d> = PolynomialRing(GF(127))
            sage: I = sage.rings.ideal.Katsura(P)
            sage: F = Sequence(I); F # indirect doctest
            [a + 2*b + 2*c + 2*d - 1,
             a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
             2*a*b + 2*b*c + 2*c*d - b,
             b^2 + 2*a*c + 2*b*d - c]

        If the system contains 20 or more polynomials, a short summary
        is printed::

            sage: sr = mq.SR(allow_zero_inversions=True,gf2=True)
            sage: F,s = sr.polynomial_system(); F
            Polynomial Sequence with 36 Polynomials in 20 Variables

        """
        if len(self) < 20:
            return Sequence_generic._repr_(self)
        else:
            return "Polynomial Sequence with %d Polynomials in %d Variables"%(len(self),self.nvariables())
    def _repr_(self):
        """
        Return a string representation of this system.

        EXAMPLE::

            sage: P.<a,b,c,d> = PolynomialRing(GF(127))
            sage: I = sage.rings.ideal.Katsura(P)
            sage: F = Sequence(I); F # indirect doctest
            [a + 2*b + 2*c + 2*d - 1,
             a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a,
             2*a*b + 2*b*c + 2*c*d - b,
             b^2 + 2*a*c + 2*b*d - c]

        If the system contains 20 or more polynomials, a short summary
        is printed::

            sage: sr = mq.SR(allow_zero_inversions=True,gf2=True)
            sage: F,s = sr.polynomial_system(); F
            Polynomial Sequence with 56 Polynomials in 20 Variables

        """
        if len(self) < 20:
            return Sequence_generic._repr_(self)
        else:
            return "Polynomial Sequence with %d Polynomials in %d Variables"%(len(self),self.nvariables())
示例#3
0
    def __init__(self, parts, ring, immutable=False, cr=False, cr_str=None):
        """
        Construct a new system of multivariate polynomials.

        INPUT:

        - ``part`` - a list of lists with polynomials

        -  ``ring`` - a multivariate polynomial ring

        - ``immutable`` - if ``True`` the sequence is immutable (default: ``False``)

        - ``cr`` - print a line break after each element (default: ``False``)

        - ``cr_str`` - print a line break after each element if 'str'
          is called (default: ``None``)

        EXAMPLES::

            sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
            sage: I = sage.rings.ideal.Katsura(P)

            sage: Sequence([I.gens()], I.ring()) # indirect doctest
            [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

        If an ideal is provided, the generators are used.::

            sage: Sequence(I)
            [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

        If a list of polynomials is provided, the system has only one
        part.::

            sage: Sequence(I.gens(), I.ring())
            [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
        """

        Sequence_generic.__init__(self,
                                  sum(parts, tuple()),
                                  ring,
                                  check=False,
                                  immutable=immutable,
                                  cr=cr,
                                  cr_str=cr_str,
                                  use_sage_types=True)
        self._ring = ring
        self._parts = parts
    def __init__(self, parts, ring, immutable=False, cr=False, cr_str=None):
        """
        Construct a new system of multivariate polynomials.

        INPUT:

        - ``part`` - a list of lists with polynomials

        -  ``ring`` - a multivariate polynomial ring

        - ``immutable`` - if ``True`` the sequence is immutable (default: ``False``)

        - ``cr`` - print a line break after each element (default: ``False``)

        - ``cr_str`` - print a line break after each element if 'str'
          is called (default: ``None``)

        EXAMPLES::

            sage: P.<a,b,c,d> = PolynomialRing(GF(127),4)
            sage: I = sage.rings.ideal.Katsura(P)

            sage: Sequence([I.gens()], I.ring()) # indirect doctest
            [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

        If an ideal is provided, the generators are used.::

            sage: Sequence(I)
            [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]

        If a list of polynomials is provided, the system has only one
        part.::

            sage: Sequence(I.gens(), I.ring())
            [a + 2*b + 2*c + 2*d - 1, a^2 + 2*b^2 + 2*c^2 + 2*d^2 - a, 2*a*b + 2*b*c + 2*c*d - b, b^2 + 2*a*c + 2*b*d - c]
        """

        Sequence_generic.__init__(self, sum(parts,tuple()), ring, check=False, immutable=immutable,
                                  cr=cr, cr_str=cr_str, use_sage_types=True)
        self._ring = ring
        self._parts = parts