示例#1
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: y=var('y')
            sage: bessel_I(y,x)
            bessel_I(y, x)
            sage: bessel_I(0.0, 1.0)
            1.26606587775201
            sage: bessel_I(1/2, 1)
            sqrt(2)*sinh(1)/sqrt(pi)
            sage: bessel_I(-1/2, pi)
            sqrt(2)*cosh(pi)/pi
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression)
                and (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        # special identities
        if n == Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * sinh(x)
        elif n == -Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * cosh(x)

        return None  # leaves the expression unevaluated
示例#2
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: y=var('y')
            sage: bessel_I(y,x)
            bessel_I(y, x)
            sage: bessel_I(0.0, 1.0)
            1.26606587775201
            sage: bessel_I(1/2, 1)
            sqrt(2)*sinh(1)/sqrt(pi)
            sage: bessel_I(-1/2, pi)
            sqrt(2)*cosh(pi)/pi
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression) and
                (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        # special identities
        if n == Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * sinh(x)
        elif n == -Integer(1) / Integer(2):
            return sqrt(2 / (pi * x)) * cosh(x)

        return None  # leaves the expression unevaluated
示例#3
0
文件: other.py 项目: ppurka/sagelib
    def _eval_(self, x, y):
        """
        EXAMPLES::

            sage: gamma_inc(2.,0)
            1.00000000000000
            sage: gamma_inc(2,0)
            1
            sage: gamma_inc(1/2,2)
            -(erf(sqrt(2)) - 1)*sqrt(pi)
            sage: gamma_inc(1/2,1)
            -(erf(1) - 1)*sqrt(pi)
            sage: gamma_inc(1/2,0)
            sqrt(pi)
            sage: gamma_inc(x,0)
            gamma(x)
            sage: gamma_inc(1,2)
            e^(-2)
            sage: gamma_inc(0,2)
            -Ei(-2)
        """
        if not isinstance(x, Expression) and not isinstance(y, Expression) and \
               (is_inexact(x) or is_inexact(y)):
            x, y = coercion_model.canonical_coercion(x, y)
            return self._evalf_(x, y, parent(x))

        if y == 0:
            return gamma(x)
        if x == 1:
            return exp(-y)
        if x == 0:
            return -Ei(-y)
        if x == Rational(1)/2: #only for x>0
            return sqrt(pi)*(1-erf(sqrt(y)))
        return None
示例#4
0
    def _eval_(self, x, y):
        """
        EXAMPLES::

            sage: gamma_inc(2.,0)
            1.00000000000000
            sage: gamma_inc(2,0)
            1
            sage: gamma_inc(1/2,2)
            -(erf(sqrt(2)) - 1)*sqrt(pi)
            sage: gamma_inc(1/2,1)
            -(erf(1) - 1)*sqrt(pi)
            sage: gamma_inc(1/2,0)
            sqrt(pi)
            sage: gamma_inc(x,0)
            gamma(x)
            sage: gamma_inc(1,2)
            e^(-2)
            sage: gamma_inc(0,2)
            -Ei(-2)
        """
        if not isinstance(x, Expression) and not isinstance(y, Expression) and \
               (is_inexact(x) or is_inexact(y)):
            x, y = coercion_model.canonical_coercion(x, y)
            return self._evalf_(x, y, parent(x))

        if y == 0:
            return gamma(x)
        if x == 1:
            return exp(-y)
        if x == 0:
            return -Ei(-y)
        if x == Rational(1) / 2:  #only for x>0
            return sqrt(pi) * (1 - erf(sqrt(y)))
        return None
示例#5
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: sin_integral(z)
            sin_integral(z)
            sage: sin_integral(3.0)
            1.84865252799947
            sage: sin_integral(0)
            0

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))

        # special case: z = 0
        if isinstance(z, Expression):
            if z.is_trivial_zero():
                return z
        else:
            if not z:
                return z

        return None  # leaves the expression unevaluated
示例#6
0
    def _eval_(self, n, m, theta, phi, **kwargs):
        r"""
        TESTS::

            sage: x, y = var('x y')
            sage: spherical_harmonic(1, 2, x, y)
            0
            sage: spherical_harmonic(1, -2, x, y)
            0
            sage: spherical_harmonic(1/2, 2, x, y)
            spherical_harmonic(1/2, 2, x, y)
            sage: spherical_harmonic(3, 2, x, y)
            15/4*sqrt(7/30)*cos(x)*e^(2*I*y)*sin(x)^2/sqrt(pi)
            sage: spherical_harmonic(3, 2, 1, 2)
            15/4*sqrt(7/30)*cos(1)*e^(4*I)*sin(1)^2/sqrt(pi)
            sage: spherical_harmonic(3 + I, 2., 1, 2)
            -0.351154337307488 - 0.415562233975369*I
        """
        from sage.structure.coerce import parent
        cc = get_coercion_model().canonical_coercion
        coerced = cc(phi, cc(theta, cc(n, m)[0])[0])[0]
        if is_inexact(coerced) and not isinstance(coerced, Expression):
            return self._evalf_(n, m, theta, phi, parent=parent(coerced))
        elif n in ZZ and m in ZZ and n > -1:
            if abs(m) > n:
                return ZZ(0)
            return meval("spherical_harmonic({},{},{},{})".format(
                ZZ(n), ZZ(m), maxima(theta), maxima(phi)))
        return
示例#7
0
文件: other.py 项目: ppurka/sagelib
    def _eval_(self, x):
        """
        Evaluate the factorial function.

        Note that this method overrides the eval method defined in GiNaC
        which calls numeric evaluation on all numeric input. We preserve
        exact results if the input is a rational number.

        EXAMPLES::

            sage: k = var('k')
            sage: k.factorial()
            factorial(k)
            sage: SR(1/2).factorial()
            1/2*sqrt(pi)
            sage: SR(3/4).factorial()
            gamma(7/4)
            sage: SR(5).factorial()
            120
            sage: SR(3245908723049857203948572398475r).factorial()
            factorial(3245908723049857203948572398475L)
            sage: SR(3245908723049857203948572398475).factorial()
            factorial(3245908723049857203948572398475)
        """
        if isinstance(x, Rational):
            return gamma(x+1)
        elif isinstance(x, (Integer, int)) or \
                (not isinstance(x, Expression) and is_inexact(x)):
            return py_factorial_py(x)

        return None
示例#8
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: sin_integral(z)
            sin_integral(z)
            sage: sin_integral(3.0)
            1.84865252799947
            sage: sin_integral(0)
            0

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))

        # special case: z = 0
        if isinstance(z, Expression):
            if z.is_trivial_zero():
                return z
        else:
            if not z:
                return z

        return None # leaves the expression unevaluated
示例#9
0
    def _eval_(self, x):
        """
        Evaluate the factorial function.

        Note that this method overrides the eval method defined in GiNaC
        which calls numeric evaluation on all numeric input. We preserve
        exact results if the input is a rational number.

        EXAMPLES::

            sage: k = var('k')
            sage: k.factorial()
            factorial(k)
            sage: SR(1/2).factorial()
            1/2*sqrt(pi)
            sage: SR(3/4).factorial()
            gamma(7/4)
            sage: SR(5).factorial()
            120
            sage: SR(3245908723049857203948572398475r).factorial()
            factorial(3245908723049857203948572398475L)
            sage: SR(3245908723049857203948572398475).factorial()
            factorial(3245908723049857203948572398475)
        """
        if isinstance(x, Rational):
            return gamma(x + 1)
        elif isinstance(x, (Integer, int)) or \
                (not isinstance(x, Expression) and is_inexact(x)):
            return py_factorial_py(x)

        return None
示例#10
0
文件: special.py 项目: jeromeca/sage
    def _eval_(self, n, m, theta, phi, **kwargs):
        r"""
        TESTS::

            sage: x, y = var('x y')
            sage: spherical_harmonic(1, 2, x, y)
            0
            sage: spherical_harmonic(1, -2, x, y)
            0
            sage: spherical_harmonic(1/2, 2, x, y)
            spherical_harmonic(1/2, 2, x, y)
            sage: spherical_harmonic(3, 2, x, y)
            15/4*sqrt(7/30)*cos(x)*e^(2*I*y)*sin(x)^2/sqrt(pi)
            sage: spherical_harmonic(3, 2, 1, 2)
            15/4*sqrt(7/30)*cos(1)*e^(4*I)*sin(1)^2/sqrt(pi)
            sage: spherical_harmonic(3 + I, 2., 1, 2)
            -0.351154337307488 - 0.415562233975369*I
        """
        from sage.structure.coerce import parent

        cc = get_coercion_model().canonical_coercion
        coerced = cc(phi, cc(theta, cc(n, m)[0])[0])[0]
        if is_inexact(coerced) and not isinstance(coerced, Expression):
            return self._evalf_(n, m, theta, phi, parent=parent(coerced))
        elif n in ZZ and m in ZZ and n > -1:
            if abs(m) > n:
                return ZZ(0)
            return meval("spherical_harmonic({},{},{},{})".format(ZZ(n), ZZ(m), maxima(theta), maxima(phi)))
        return
示例#11
0
    def _eval_(self, n, z):
        """
        EXAMPLES::

            sage: exp_integral_e(1.0, x)
            exp_integral_e(1.00000000000000, x)
            sage: exp_integral_e(x, 1.0)
            exp_integral_e(x, 1.00000000000000)
            sage: exp_integral_e(1.0, 1.0)
            0.219383934395520

        """
        if not isinstance(n, Expression) and not isinstance(z, Expression) and \
               (is_inexact(n) or is_inexact(z)):
            coercion_model = sage.structure.element.get_coercion_model()
            n, z = coercion_model.canonical_coercion(n, z)
            return self._evalf_(n, z, parent(n))

        z_zero = False
        # special case: z == 0 and n > 1
        if isinstance(z, Expression):
            if z.is_trivial_zero():
                z_zero = True # for later
                if n > 1:
                    return 1/(n-1)
        else:
            if not z:
                z_zero = True
                if n > 1:
                    return 1/(n-1)

        # special case: n == 0
        if isinstance(n, Expression):
            if n.is_trivial_zero():
                if z_zero:
                    return None
                else:
                    return exp(-z)/z
        else:
            if not n:
                if z_zero:
                    return None
                else:
                    return exp(-z)/z

        return None # leaves the expression unevaluated
示例#12
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: a,b = var('a, b')
            sage: bessel_Y(a, b)
            bessel_Y(a, b)
            sage: bessel_Y(0, 1).n(128)
            0.088256964215676957982926766023515162828
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression)
                and (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        return None  # leaves the expression unevaluated
示例#13
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: a, b = var('a, b')
            sage: bessel_J(a, b)
            bessel_J(a, b)
            sage: bessel_J(1.0, 1.0)
            0.440050585744933
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression)
                and (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        return None
示例#14
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: a,b = var('a, b')
            sage: bessel_Y(a, b)
            bessel_Y(a, b)
            sage: bessel_Y(0, 1).n(128)
            0.088256964215676957982926766023515162828
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression) and
                (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        return None  # leaves the expression unevaluated
示例#15
0
    def _eval_(self, n, z):
        """
        EXAMPLES::

            sage: exp_integral_e(1.0, x)
            exp_integral_e(1.00000000000000, x)
            sage: exp_integral_e(x, 1.0)
            exp_integral_e(x, 1.00000000000000)
            sage: exp_integral_e(1.0, 1.0)
            0.219383934395520

        """
        if not isinstance(n, Expression) and not isinstance(z, Expression) and \
               (is_inexact(n) or is_inexact(z)):
            coercion_model = sage.structure.element.get_coercion_model()
            n, z = coercion_model.canonical_coercion(n, z)
            return self._evalf_(n, z, parent(n))

        z_zero = False
        # special case: z == 0 and n > 1
        if isinstance(z, Expression):
            if z.is_trivial_zero():
                z_zero = True  # for later
                if n > 1:
                    return 1 / (n - 1)
        else:
            if not z:
                z_zero = True
                if n > 1:
                    return 1 / (n - 1)

        # special case: n == 0
        if isinstance(n, Expression):
            if n.is_trivial_zero():
                if z_zero:
                    return None
                else:
                    return exp(-z) / z
        else:
            if not n:
                if z_zero:
                    return None
                else:
                    return exp(-z) / z

        return None  # leaves the expression unevaluated
 def _eval_(self, n, z ):
     """
     EXAMPLES::
     """
     # howto find a common parent for n and z here? 
     if not isinstance(z, Expression) and is_inexact(z):
         return self._evalf_(n, z, parent(z))
     return None
示例#17
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: a, b = var('a, b')
            sage: bessel_J(a, b)
            bessel_J(a, b)
            sage: bessel_J(1.0, 1.0)
            0.440050585744933
        """
        if (not isinstance(n, Expression) and
                not isinstance(x, Expression) and
                (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        return None
示例#18
0
    def _eval_(self, n, z):
        """
        EXAMPLES::

            sage: lambert_w(6.0)
            1.43240477589830
            sage: lambert_w(1)
            lambert_w(1)
            sage: lambert_w(x+1)
            lambert_w(x + 1)

        There are three special values which are automatically simplified::

            sage: lambert_w(0)
            0
            sage: lambert_w(e)
            1
            sage: lambert_w(-1/e)
            -1
            sage: lambert_w(SR(0))
            0

        The special values only hold on the principal branch::

            sage: lambert_w(1,e)
            lambert_w(1, e)
            sage: lambert_w(1, e.n())
            -0.532092121986380 + 4.59715801330257*I

        TESTS:

        When automatic simplication occurs, the parent of the output value should be
        either the same as the parent of the input, or a Sage type::

            sage: parent(lambert_w(int(0)))
            <type 'int'>
            sage: parent(lambert_w(Integer(0)))
            Integer Ring
            sage: parent(lambert_w(e))
            Integer Ring
        """
        if not isinstance(z, Expression):
            if is_inexact(z):
                return self._evalf_(n,
                                    z,
                                    parent=sage_structure_coerce_parent(z))
            elif n == 0 and z == 0:
                return sage_structure_coerce_parent(z)(Integer(0))
        elif n == 0:
            if z.is_trivial_zero():
                return sage_structure_coerce_parent(z)(Integer(0))
            elif (z - const_e).is_trivial_zero():
                return sage_structure_coerce_parent(z)(Integer(1))
            elif (z + 1 / const_e).is_trivial_zero():
                return sage_structure_coerce_parent(z)(Integer(-1))
        return None
示例#19
0
文件: log.py 项目: Etn40ff/sage
    def _eval_(self, n, z):
        """
        EXAMPLES::

            sage: lambert_w(6.0)
            1.43240477589830
            sage: lambert_w(1)
            lambert_w(1)
            sage: lambert_w(x+1)
            lambert_w(x + 1)

        There are three special values which are automatically simplified::

            sage: lambert_w(0)
            0
            sage: lambert_w(e)
            1
            sage: lambert_w(-1/e)
            -1
            sage: lambert_w(SR(0))
            0

        The special values only hold on the principal branch::

            sage: lambert_w(1,e)
            lambert_w(1, e)
            sage: lambert_w(1, e.n())
            -0.532092121986380 + 4.59715801330257*I

        TESTS:

        When automatic simplication occurs, the parent of the output value should be
        either the same as the parent of the input, or a Sage type::

            sage: parent(lambert_w(int(0)))
            <type 'int'>
            sage: parent(lambert_w(Integer(0)))
            Integer Ring
            sage: parent(lambert_w(e))
            Integer Ring
        """
        if not isinstance(z, Expression):
            if is_inexact(z):
                return self._evalf_(n, z, parent=sage_structure_coerce_parent(z))
            elif n == 0 and z == 0:
                return sage_structure_coerce_parent(z)(Integer(0))
        elif n == 0:
            if z.is_trivial_zero():
                return sage_structure_coerce_parent(z)(Integer(0))
            elif (z-const_e).is_trivial_zero():
                return sage_structure_coerce_parent(z)(Integer(1))
            elif (z+1/const_e).is_trivial_zero():
                return sage_structure_coerce_parent(z)(Integer(-1))
        return None
示例#20
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: bessel_K(1,0)
            bessel_K(1, 0)
            sage: bessel_K(1.0, 0.0)
            +infinity
            sage: bessel_K(-1, 1).n(128)
            0.60190723019723457473754000153561733926
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression)
                and (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        # special identity
        if n == Integer(1) / Integer(2) and x > 0:
            return sqrt(pi / 2) * exp(-x) * x**(-Integer(1) / Integer(2))

        return None  # leaves the expression unevaluated
示例#21
0
    def _eval_(self, n, x):
        """
        EXAMPLES::

            sage: bessel_K(1,0)
            bessel_K(1, 0)
            sage: bessel_K(1.0, 0.0)
            +infinity
            sage: bessel_K(-1, 1).n(128)
            0.60190723019723457473754000153561733926
        """
        if (not isinstance(n, Expression) and not isinstance(x, Expression) and
                (is_inexact(n) or is_inexact(x))):
            coercion_model = get_coercion_model()
            n, x = coercion_model.canonical_coercion(n, x)
            return self._evalf_(n, x, parent(n))

        # special identity
        if n == Integer(1) / Integer(2) and x > 0:
            return sqrt(pi / 2) * exp(-x) * x ** (-Integer(1) / Integer(2))

        return None  # leaves the expression unevaluated
示例#22
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: exp_integral_e1(x)
            exp_integral_e1(x)
            sage: exp_integral_e1(1.0)
            0.219383934395520

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))

        return None  # leaves the expression unevaluated
示例#23
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: exp_integral_e1(x)
            exp_integral_e1(x)
            sage: exp_integral_e1(1.0)
            0.219383934395520

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))

        return None # leaves the expression unevaluated
示例#24
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: cosh_integral(z)
            cosh_integral(z)
            sage: cosh_integral(3.0)
            4.96039209476561

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))

        return None
示例#25
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: cosh_integral(z)
            cosh_integral(z)
            sage: cosh_integral(3.0)
            4.96039209476561

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))

        return None
示例#26
0
    def _eval_(self, x ):
        """
        EXAMPLES::

            sage: Ei(10)
            Ei(10)
            sage: Ei(I)
            Ei(I)
            sage: Ei(1.3)
            2.72139888023202
            sage: Ei(10r)
            Ei(10)
            sage: Ei(1.3r)
            2.7213988802320235
        """
        if not isinstance(x, Expression) and is_inexact(x):
            return self._evalf_(x, parent(x))
        return None
示例#27
0
 def _eval_(self, a, b, z, **kwargs):
     """
     EXAMPLES::
     
         sage: hypergeometric([], [], 0)
         1
     """
     if not isinstance(a,tuple) or not isinstance(b,tuple):
         raise ValueError('First two parameters must be of type list.')
     coercion_model = get_coercion_model()
     co = reduce(lambda x, y: coercion_model.canonical_coercion(x, y)[0],
                 a + b + (z,))
     if is_inexact(co) and not isinstance(co, Expression):
         from sage.structure.coerce import parent
         return self._evalf_(a, b, z, parent=parent(co))
     if not isinstance(z, Expression) and z == 0:  # Expression is excluded
         return Integer(1)                         # to avoid call to Maxima
     return
示例#28
0
    def _eval_(self, x):
        """
        EXAMPLES::

            sage: Ei(10)
            Ei(10)
            sage: Ei(I)
            Ei(I)
            sage: Ei(1.3)
            2.72139888023202
            sage: Ei(10r)
            Ei(10)
            sage: Ei(1.3r)
            2.72139888023202
        """
        if not isinstance(x, Expression) and is_inexact(x):
            return self._evalf_(x, parent(x))
        return None
示例#29
0
 def _eval_(self, a, b, z, **kwargs):
     """
     EXAMPLES::
     
         sage: hypergeometric([], [], 0)
         1
     """
     if not isinstance(a,tuple) or not isinstance(b,tuple):
         raise ValueError('First two parameters must be of type list.')
     coercion_model = get_coercion_model()
     co = reduce(lambda x, y: coercion_model.canonical_coercion(x, y)[0],
                 a + b + (z,))
     if is_inexact(co) and not isinstance(co, Expression):
         from sage.structure.coerce import parent
         return self._evalf_(a, b, z, parent=parent(co))
     if not isinstance(z, Expression) and z == 0:  # Expression is excluded
         return Integer(1)                         # to avoid call to Maxima
     return
示例#30
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: cos_integral(z)
            cos_integral(z)
            sage: cos_integral(3.0)
            0.119629786008000
            sage: cos_integral(0)
            cos_integral(0)
            sage: N(cos_integral(0))
            -infinity

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))

        return None  # leaves the expression unevaluated
示例#31
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: log_integral_offset(z)
            -log_integral(2) + log_integral(z)
            sage: log_integral_offset(3.0)
            1.11842481454970
            sage: log_integral_offset(2)
            0

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))
        if z == 2:
            import sage.symbolic.ring
            return sage.symbolic.ring.SR(0)
        return li(z) - li(2)
示例#32
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: cos_integral(z)
            cos_integral(z)
            sage: cos_integral(3.0)
            0.119629786008000
            sage: cos_integral(0)
            cos_integral(0)
            sage: N(cos_integral(0))
            -infinity

        """
        if not isinstance(z, Expression) and is_inexact(z):
            return self._evalf_(z, parent(z))

        return None # leaves the expression unevaluated
示例#33
0
    def _eval_(self,z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: log_integral_offset(z)
            -log_integral(2) + log_integral(z)
            sage: log_integral_offset(3.0)
            1.11842481454970
            sage: log_integral_offset(2)
            0

        """
        if not isinstance(z,Expression) and is_inexact(z):
            return self._evalf_(z,parent(z))
        if z==2:
            import sage.symbolic.ring
            return sage.symbolic.ring.SR(0)
        return li(z)-li(2)
示例#34
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: log_integral(z)
            log_integral(z)
            sage: log_integral(3.0)
            2.16358859466719
            sage: log_integral(0)
            0

        """
        if isinstance(z, Expression):
            if z.is_trivial_zero():         # special case: z = 0
                return z
        else:
            if is_inexact(z):
                return self._evalf_(z, parent(z))
            elif not z:
                return z
        return None # leaves the expression unevaluated
示例#35
0
    def _eval_(self, z):
        """
        EXAMPLES::

            sage: z = var('z')
            sage: log_integral(z)
            log_integral(z)
            sage: log_integral(3.0)
            2.16358859466719
            sage: log_integral(0)
            0

        """
        if isinstance(z, Expression):
            if z.is_trivial_zero():  # special case: z = 0
                return z
        else:
            if is_inexact(z):
                return self._evalf_(z, parent(z))
            elif not z:
                return z
        return None  # leaves the expression unevaluated
    def _eval_(self, s, x):
        r"""
        TESTS::

            sage: hurwitz_zeta(x, 1)
            zeta(x)
            sage: hurwitz_zeta(4, 3)
            1/90*pi^4 - 17/16
            sage: hurwitz_zeta(-4, x)
            -1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x
            sage: hurwitz_zeta(3, 0.5)
            8.41439832211716
        """
        co = get_coercion_model().canonical_coercion(s, x)[0]
        if is_inexact(co) and not isinstance(co, Expression):
            return self._evalf_(s, x, parent=parent(co))
        if x == 1:
            return zeta(s)
        if s in ZZ and s > 1:
            return ((-1)**s) * psi(s - 1, x) / factorial(s - 1)
        elif s in ZZ and s < 0:
            return -bernoulli_polynomial(x, -s + 1) / (-s + 1)
        else:
            return
示例#37
0
    def _eval_(self, x):
        """
        EXAMPLES::

            sage: arg(3+i)
            arctan(1/3)
            sage: arg(-1+i)
            3/4*pi
            sage: arg(2+2*i)
            1/4*pi
            sage: arg(2+x)
            arg(x + 2)
            sage: arg(2.0+i+x)
            arg(x + 2.00000000000000 + 1.00000000000000*I)
            sage: arg(-3)
            pi
            sage: arg(3)
            0
            sage: arg(0)
            0
            sage: arg(sqrt(2)+i)
            arg(sqrt(2) + I)

        """
        if not isinstance(x, Expression):
            # x contains no variables
            if is_inexact(x):
                # inexact complex numbers, e.g. 2.0+i
                return self._evalf_(x, parent(x))
            else:
                # exact complex numbers, e.g. 2+i
                return arctan2(imag_part(x), real_part(x))
        else:
            # x contains variables, e.g. 2+i+y or 2.0+i+y
            # or x involves an expression such as sqrt(2)
            return None
示例#38
0
文件: other.py 项目: ppurka/sagelib
    def _eval_(self, x):
        """
        EXAMPLES::

            sage: arg(3+i)
            arctan(1/3)
            sage: arg(-1+i)
            3/4*pi
            sage: arg(2+2*i)
            1/4*pi
            sage: arg(2+x)
            arg(x + 2)
            sage: arg(2.0+i+x)
            arg(x + 2.00000000000000 + 1.00000000000000*I)
            sage: arg(-3)
            pi
            sage: arg(3)
            0
            sage: arg(0)
            0
            sage: arg(sqrt(2)+i)
            arg(sqrt(2) + I)

        """
        if not isinstance(x,Expression):
            # x contains no variables
            if is_inexact(x):
                # inexact complex numbers, e.g. 2.0+i
                return self._evalf_(x, parent(x))
            else:
                # exact complex numbers, e.g. 2+i
                return arctan2(imag_part(x),real_part(x))
        else:
            # x contains variables, e.g. 2+i+y or 2.0+i+y
            # or x involves an expression such as sqrt(2)
            return None
示例#39
0
    def _eval_(self, s, x):
        r"""
        TESTS::

            sage: hurwitz_zeta(x, 1)
            zeta(x)
            sage: hurwitz_zeta(4, 3)
            1/90*pi^4 - 17/16
            sage: hurwitz_zeta(-4, x)
            -1/5*x^5 + 1/2*x^4 - 1/3*x^3 + 1/30*x
            sage: hurwitz_zeta(3, 0.5)
            8.41439832211716
        """
        co = get_coercion_model().canonical_coercion(s, x)[0]
        if is_inexact(co) and not isinstance(co, Expression):
            return self._evalf_(s, x, parent=parent(co))
        if x == 1:
            return zeta(s)
        if s in ZZ and s > 1:
            return ((-1) ** s) * psi(s - 1, x) / factorial(s - 1)
        elif s in ZZ and s < 0:
            return -bernoulli_polynomial(x, -s + 1) / (-s + 1)
        else:
            return
示例#40
0
def exponential_integral_1(x, n=0):
    r"""
    Returns the exponential integral `E_1(x)`. If the optional
    argument `n` is given, computes list of the first
    `n` values of the exponential integral
    `E_1(x m)`.

    The exponential integral `E_1(x)` is

    .. math::

                      E_1(x) = \int_{x}^{\infty} e^{-t}/t dt

    INPUT:

    - ``x`` -- a positive real number

    - ``n`` -- (default: 0) a nonnegative integer; if
      nonzero, then return a list of values ``E_1(x*m)`` for m =
      1,2,3,...,n. This is useful, e.g., when computing derivatives of
      L-functions.


    OUTPUT:

    A real number if n is 0 (the default) or a list of reals if n > 0.
    The precision is the same as the input, with a default of 53 bits
    in case the input is exact.

    EXAMPLES::

        sage: exponential_integral_1(2)
        0.0489005107080611
        sage: exponential_integral_1(2,4)  # abs tol 1e-18
        [0.0489005107080611, 0.00377935240984891, 0.000360082452162659, 0.0000376656228439245]
        sage: exponential_integral_1(40,5)
        [1.03677326145166e-19, 2.22854325868847e-37, 6.33732515501151e-55, 2.02336191509997e-72, 6.88522610630764e-90]
        sage: exponential_integral_1(0)
        +Infinity
        sage: r = exponential_integral_1(RealField(150)(1))
        sage: r
        0.21938393439552027367716377546012164903104729
        sage: parent(r)
        Real Field with 150 bits of precision
        sage: exponential_integral_1(RealField(150)(100))
        3.6835977616820321802351926205081189876552201e-46

    TESTS:

    The relative error for a single value should be less than 1 ulp::

        sage: for prec in [20..1000]:  # long time (22s on sage.math, 2013)
        ....:     R = RealField(prec)
        ....:     S = RealField(prec+64)
        ....:     for t in range(8):  # Try 8 values for each precision
        ....:         a = R.random_element(-15,10).exp()
        ....:         x = exponential_integral_1(a)
        ....:         y = exponential_integral_1(S(a))
        ....:         e = float(abs(S(x) - y)/x.ulp())
        ....:         if e >= 1.0:
        ....:             print "exponential_integral_1(%s) with precision %s has error of %s ulp"%(a, prec, e)

    The absolute error for a vector should be less than `c 2^{-p}`, where
    `p` is the precision in bits of `x` and `c = 2 max(1, exponential_integral_1(x))`::

        sage: for prec in [20..128]:  # long time (15s on sage.math, 2013)
        ....:     R = RealField(prec)
        ....:     S = RealField(prec+64)
        ....:     a = R.random_element(-15,10).exp()
        ....:     n = 2^ZZ.random_element(14)
        ....:     x = exponential_integral_1(a, n)
        ....:     y = exponential_integral_1(S(a), n)
        ....:     c = RDF(2 * max(1.0, y[0]))
        ....:     for i in range(n):
        ....:         e = float(abs(S(x[i]) - y[i]) << prec)
        ....:         if e >= c:
        ....:             print "exponential_integral_1(%s, %s)[%s] with precision %s has error of %s >= %s"%(a, n, i, prec, e, c)

    ALGORITHM: use the PARI C-library function ``eint1``.

    REFERENCE:

    - See Proposition 5.6.12 of Cohen's book "A Course in
      Computational Algebraic Number Theory".
    """
    if isinstance(x, Expression):
        if x.is_trivial_zero():
            from sage.rings.infinity import Infinity
            return Infinity
        else:
            raise NotImplementedError("Use the symbolic exponential integral " +
                                      "function: exp_integral_e1.")
    elif not is_inexact(x): # x is exact and not an expression
        if not x: # test if exact x == 0 quickly
            from sage.rings.infinity import Infinity
            return Infinity

    # else x is not an exact 0
    from sage.libs.pari.all import pari
    # Figure out output precision
    try:
        prec = parent(x).precision()
    except AttributeError:
        prec = 53

    R = RealField(prec)
    if n <= 0:
        # Add extra bits to the input.
        # (experimentally verified -- Jeroen Demeyer)
        inprec = prec + math.ceil(math.log(2*prec))
        x = RealField(inprec)(x)._pari_()
        return R(x.eint1())
    else:
        # PARI's algorithm is less precise as n grows larger:
        # add extra bits.
        # (experimentally verified -- Jeroen Demeyer)
        inprec = prec + 1 + math.ceil(1.4427 * math.log(n))
        x = RealField(inprec)(x)._pari_()
        return [R(z) for z in x.eint1(n)]
示例#41
0
def exponential_integral_1(x, n=0):
    r"""
    Returns the exponential integral `E_1(x)`. If the optional
    argument `n` is given, computes list of the first
    `n` values of the exponential integral
    `E_1(x m)`.

    The exponential integral `E_1(x)` is

    .. math::

                      E_1(x) = \int_{x}^{\infty} e^{-t}/t dt

    INPUT:

    -  ``x`` - a positive real number

    -  ``n`` - (default: 0) a nonnegative integer; if
       nonzero, then return a list of values E_1(x\*m) for m =
       1,2,3,...,n. This is useful, e.g., when computing derivatives of
       L-functions.

    OUTPUT:

    -  ``float`` - if n is 0 (the default) or

    -  ``list`` - list of floats if n 0

    EXAMPLES::

        sage: exponential_integral_1(2)
        0.04890051070806112
        sage: exponential_integral_1(2,4)    # rel tol 1e-10
        [0.04890051070806112, 0.0037793524098489067, 0.00036008245216265873, 3.7665622843924751e-05]
        sage: exponential_integral_1(0)
        +Infinity

    IMPLEMENTATION: We use the PARI C-library functions eint1 and
    veceint1.

    REFERENCE:

    - See page 262, Prop 5.6.12, of Cohen's book "A Course in
      Computational Algebraic Number Theory".

    REMARKS: When called with the optional argument n, the PARI
    C-library is fast for values of n up to some bound, then very very
    slow. For example, if x=5, then the computation takes less than a
    second for n=800000, and takes "forever" for n=900000.
    """
    if isinstance(x, Expression):
        if x.is_trivial_zero():
            from sage.rings.infinity import Infinity
            return Infinity
        else:
            raise NotImplementedError(
                "Use the symbolic exponential integral " +
                "function: exp_integral_e1.")
    elif not is_inexact(x):  # x is exact and not an expression
        if not x:  # test if exact x == 0 quickly
            from sage.rings.infinity import Infinity
            return Infinity

    # else x is in not an exact 0
    from sage.libs.pari.all import pari
    if n <= 0:
        return float(pari(x).eint1())
    else:
        return [float(z) for z in pari(x).eint1(n)]
示例#42
0
def exponential_integral_1(x, n=0):
    r"""
    Returns the exponential integral `E_1(x)`. If the optional
    argument `n` is given, computes list of the first
    `n` values of the exponential integral
    `E_1(x m)`.

    The exponential integral `E_1(x)` is

    .. math::

                      E_1(x) = \int_{x}^{\infty} e^{-t}/t dt

    INPUT:

    - ``x`` -- a positive real number

    - ``n`` -- (default: 0) a nonnegative integer; if
      nonzero, then return a list of values ``E_1(x*m)`` for m =
      1,2,3,...,n. This is useful, e.g., when computing derivatives of
      L-functions.


    OUTPUT:

    A real number if n is 0 (the default) or a list of reals if n > 0.
    The precision is the same as the input, with a default of 53 bits
    in case the input is exact.

    EXAMPLES::

        sage: exponential_integral_1(2)
        0.0489005107080611
        sage: exponential_integral_1(2,4)  # abs tol 1e-18
        [0.0489005107080611, 0.00377935240984891, 0.000360082452162659, 0.0000376656228439245]
        sage: exponential_integral_1(40,5)
        [1.03677326145166e-19, 2.22854325868847e-37, 6.33732515501151e-55, 2.02336191509997e-72, 6.88522610630764e-90]
        sage: exponential_integral_1(0)
        +Infinity
        sage: r = exponential_integral_1(RealField(150)(1))
        sage: r
        0.21938393439552027367716377546012164903104729
        sage: parent(r)
        Real Field with 150 bits of precision
        sage: exponential_integral_1(RealField(150)(100))
        3.6835977616820321802351926205081189876552201e-46

    TESTS:

    The relative error for a single value should be less than 1 ulp::

        sage: for prec in [20..1000]:  # long time (22s on sage.math, 2013)
        ....:     R = RealField(prec)
        ....:     S = RealField(prec+64)
        ....:     for t in range(8):  # Try 8 values for each precision
        ....:         a = R.random_element(-15,10).exp()
        ....:         x = exponential_integral_1(a)
        ....:         y = exponential_integral_1(S(a))
        ....:         e = float(abs(S(x) - y)/x.ulp())
        ....:         if e >= 1.0:
        ....:             print "exponential_integral_1(%s) with precision %s has error of %s ulp"%(a, prec, e)

    The absolute error for a vector should be less than `c 2^{-p}`, where
    `p` is the precision in bits of `x` and `c = 2 max(1, exponential_integral_1(x))`::

        sage: for prec in [20..128]:  # long time (15s on sage.math, 2013)
        ....:     R = RealField(prec)
        ....:     S = RealField(prec+64)
        ....:     a = R.random_element(-15,10).exp()
        ....:     n = 2^ZZ.random_element(14)
        ....:     x = exponential_integral_1(a, n)
        ....:     y = exponential_integral_1(S(a), n)
        ....:     c = RDF(2 * max(1.0, y[0]))
        ....:     for i in range(n):
        ....:         e = float(abs(S(x[i]) - y[i]) << prec)
        ....:         if e >= c:
        ....:             print "exponential_integral_1(%s, %s)[%s] with precision %s has error of %s >= %s"%(a, n, i, prec, e, c)

    ALGORITHM: use the PARI C-library function ``eint1``.

    REFERENCE:

    - See Proposition 5.6.12 of Cohen's book "A Course in
      Computational Algebraic Number Theory".
    """
    if isinstance(x, Expression):
        if x.is_trivial_zero():
            from sage.rings.infinity import Infinity
            return Infinity
        else:
            raise NotImplementedError(
                "Use the symbolic exponential integral " +
                "function: exp_integral_e1.")
    elif not is_inexact(x):  # x is exact and not an expression
        if not x:  # test if exact x == 0 quickly
            from sage.rings.infinity import Infinity
            return Infinity

    # else x is not an exact 0
    from sage.libs.pari.all import pari
    # Figure out output precision
    try:
        prec = parent(x).precision()
    except AttributeError:
        prec = 53

    R = RealField(prec)
    if n <= 0:
        # Add extra bits to the input.
        # (experimentally verified -- Jeroen Demeyer)
        inprec = prec + math.ceil(math.log(2 * prec))
        x = RealField(inprec)(x)._pari_()
        return R(x.eint1())
    else:
        # PARI's algorithm is less precise as n grows larger:
        # add extra bits.
        # (experimentally verified -- Jeroen Demeyer)
        inprec = prec + 1 + math.ceil(1.4427 * math.log(n))
        x = RealField(inprec)(x)._pari_()
        return [R(z) for z in x.eint1(n)]
示例#43
0
def exponential_integral_1(x, n=0):
    r"""
    Returns the exponential integral `E_1(x)`. If the optional
    argument `n` is given, computes list of the first
    `n` values of the exponential integral
    `E_1(x m)`.

    The exponential integral `E_1(x)` is

    .. math::

                      E_1(x) = \int_{x}^{\infty} e^{-t}/t dt

    INPUT:

    -  ``x`` - a positive real number

    -  ``n`` - (default: 0) a nonnegative integer; if
       nonzero, then return a list of values E_1(x\*m) for m =
       1,2,3,...,n. This is useful, e.g., when computing derivatives of
       L-functions.


    OUTPUT:

    -  ``float`` - if n is 0 (the default) or

    -  ``list`` - list of floats if n 0


    EXAMPLES::

        sage: exponential_integral_1(2)
        0.04890051070806112
        sage: exponential_integral_1(2,4)    # rel tol 1e-10
        [0.04890051070806112, 0.0037793524098489067, 0.00036008245216265873, 3.7665622843924751e-05]
        sage: exponential_integral_1(0)
        +Infinity

    IMPLEMENTATION: We use the PARI C-library functions eint1 and
    veceint1.

    REFERENCE:

    - See page 262, Prop 5.6.12, of Cohen's book "A Course in
      Computational Algebraic Number Theory".

    REMARKS: When called with the optional argument n, the PARI
    C-library is fast for values of n up to some bound, then very very
    slow. For example, if x=5, then the computation takes less than a
    second for n=800000, and takes "forever" for n=900000.
    """
    if isinstance(x, Expression):
        if x.is_trivial_zero():
            from sage.rings.infinity import Infinity
            return Infinity
        else:
            raise NotImplementedError("Use the symbolic exponential integral " +
                                      "function: exp_integral_e1.")
    elif not is_inexact(x): # x is exact and not an expression
        if not x: # test if exact x == 0 quickly
            from sage.rings.infinity import Infinity
            return Infinity

    # else x is in not an exact 0
    from sage.libs.pari.all import pari
    if n <= 0:
        return float(pari(x).eint1())
    else:
        return [float(z) for z in pari(x).eint1(n)]