def test_trainer_dataframe(): session = create_sagemaker_session(describe_training_result=_describe_training_result(), metric_stats_results=_metric_stats_results()) trainer = TrainingJobAnalytics("my-training-job", ["train:acc"], sagemaker_session=session) df = trainer.dataframe() assert df is not None assert len(df) == 3 assert min(df['value']) == 77.1 assert max(df['value']) == 97.1 # Export to CSV and check that file exists tmp_name = "/tmp/unit-test-%s.csv" % uuid.uuid4() assert not os.path.isfile(tmp_name) trainer.export_csv(tmp_name) assert os.path.isfile(tmp_name) os.unlink(tmp_name)
def test_trainer_dataframe(): describe_training_result = { 'TrainingStartTime': datetime.datetime(2018, 5, 16, 1, 2, 3), 'TrainingEndTime': datetime.datetime(2018, 5, 16, 5, 6, 7), } metric_stats_results = { 'Datapoints': [ { 'Average': 77.1, 'Timestamp': datetime.datetime(2018, 5, 16, 1, 3, 3), }, { 'Average': 87.1, 'Timestamp': datetime.datetime(2018, 5, 16, 1, 8, 3), }, { 'Average': 97.1, 'Timestamp': datetime.datetime(2018, 5, 16, 2, 3, 3), }, ] } session = sagemaker_session( describe_training_result=describe_training_result, metric_stats_results=metric_stats_results) trainer = TrainingJobAnalytics("my-training-job", ["train:acc"], sagemaker_session=session) df = trainer.dataframe() assert df is not None assert len(df) == 3 assert min(df['value']) == 77.1 assert max(df['value']) == 97.1 # Export to CSV and check that file exists tmp_name = "/tmp/unit-test-%s.csv" % uuid.uuid4() assert not os.path.isfile(tmp_name) trainer.export_csv(tmp_name) assert os.path.isfile(tmp_name) os.unlink(tmp_name)