def pca_estimator_with_debug_hook(): s3_output_location = 's3://sagemaker/models' hook_config = DebuggerHookConfig( s3_output_path='s3://sagemaker/output/debug', hook_parameters={ "save_interval": "1" }, collection_configs=[ CollectionConfig("hyperparameters"), CollectionConfig("metrics") ] ) rules = [Rule.sagemaker(rule_configs.confusion(), rule_parameters={ "category_no": "15", "min_diag": "0.7", "max_off_diag": "0.3", "start_step": "17", "end_step": "19"} )] pca = sagemaker.estimator.Estimator( PCA_IMAGE, role=EXECUTION_ROLE, train_instance_count=1, train_instance_type='ml.c4.xlarge', output_path=s3_output_location, debugger_hook_config = hook_config, rules=rules ) pca.set_hyperparameters( feature_dim=50000, num_components=10, subtract_mean=True, algorithm_mode='randomized', mini_batch_size=200 ) pca.sagemaker_session = MagicMock() pca.sagemaker_session.boto_region_name = 'us-east-1' pca.sagemaker_session._default_bucket = 'sagemaker' return pca
# TODO: Upload source files here given we are not calling fit debug_hook_config = DebuggerHookConfig( s3_output_path=debug_output_path, hook_parameters={"save_interval": "1"}, collection_configs=[ CollectionConfig("hyperparameters"), CollectionConfig("metrics"), CollectionConfig("predictions"), CollectionConfig("labels"), CollectionConfig("feature_importance") ]) debug_rules = [ Rule.sagemaker(rule_configs.confusion(), rule_parameters={ "category_no": "15", "min_diag": "0.7", "max_off_diag": "0.3", "start_step": "17", "end_step": "19" }) ] hyperparameters = { "max_depth": "10", "eta": "0.2", "gamma": "1", "min_child_weight": "6", "silent": "0",