def test_configure(client): s3 = MagicMock() client.return_value = s3 loc = {'LocationConstraint': BUCKET_REGION} s3.get_bucket_location.return_value = loc s3_utils.configure(MODEL_DIR, JOB_REGION) assert os.environ['S3_REGION'] == BUCKET_REGION assert os.environ['TF_CPP_MIN_LOG_LEVEL'] == '1' assert os.environ['S3_USE_HTTPS'] == '1'
def main(): """Training entry point """ hyperparameters = environment.read_hyperparameters() env = environment.Environment(hyperparameters=hyperparameters) user_hyperparameters = env.hyperparameters # If the training job is part of the multiple training jobs for tuning, we need to append the training job name to # model_dir in case they read from/write to the same object if "_tuning_objective_metric" in hyperparameters: model_dir = _model_dir_with_training_job(hyperparameters.get("model_dir"), env.job_name) logger.info("Appending the training job name to model_dir: {}".format(model_dir)) user_hyperparameters["model_dir"] = model_dir s3_utils.configure(user_hyperparameters.get("model_dir"), os.environ.get("SAGEMAKER_REGION")) train(env, mapping.to_cmd_args(user_hyperparameters)) _log_model_missing_warning(MODEL_DIR)
def test_configure_local_dir(): s3_utils.configure('/opt/ml/model', JOB_REGION) assert os.environ['S3_REGION'] == JOB_REGION assert os.environ['TF_CPP_MIN_LOG_LEVEL'] == '1' assert os.environ['S3_USE_HTTPS'] == '1'
def test_configure_local_dir(): s3_utils.configure("/opt/ml/model", JOB_REGION) assert os.environ["S3_REGION"] == JOB_REGION assert os.environ["TF_CPP_MIN_LOG_LEVEL"] == "1" assert os.environ["S3_USE_HTTPS"] == "1"