def add_docstring_fcn(class_, method, descr): cls = getattr(sail.optimizers, class_) add_docstring(getattr(cls, method), descr)
def add_docstring_class(class_, descr): add_docstring(getattr(sail.optimizers, class_), descr)
def add_docstring_class(class_, descr): add_docstring(getattr(sail.modules, class_), descr)
def add_docstring_fcn(class_, method, descr): cls = getattr(sail.modules, class_) add_docstring(getattr(cls, method), descr)
Tensor `x1` must have at least 2 dimensions Args: x1 (Tensor): Input tensor to be filled gain (float): Scaling parameter Examples: >>> x = sail.random.uniform(0, 1, (10)) >>> sail.init.xavier_uniform(x, gain=0.5) tensor([[-0.06891035 0.24276903 0.33934638 0.15491413] [0.16111927 0.36402372 0.36035901 0.39027894] [0.23715521 0.31049126 -0.34743783 -0.39470020] [0.11064298 -0.00741466 -0.04901789 0.40659216]], shape=(4, 4)) """ add_docstring(sail.init.xavier_uniform, descr) descr = r""" sail.init.xavier_normal(x1, gain=1.0) -> Tensor Fills the tensor `x1` with values generated from an xavier normal distribution :math:`\mathcal{{N}}(0, \text{std}^2)` .. math:: \text{std} = \text{gain} * \sqrt{\frac{2}{fan\_in + fan\_out}} .. note:: Xavier normal method originally described in `Understanding the difficulty of training deep feedforward neural networks <https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_ (Glorot, X. & Bengio, Y., 2010) .. note:: Tensor `x1` must have at least 2 dimensions Args:
.. math:: \text{out} = \text{x1} + \text{x2} .. note:: If tensor shapes do not match, they must be broadcastable to a common shape. Args: x1 (Tensor): First Tensor x2 (Tensor): Second Tensor Examples: >>> a = sail.random.uniform(0, 1, (20, 3)) >>> b = sail.random.uniform(14, 15, (20, 3)) >>> c = sail.add(a, b) """ add_docstring(sail.add, descr) descr = r""" sail.subtract(x1, x2) -> Tensor Returns the elementwise subtraction of Tensor `x2` from `x1` .. math:: \text{out} = \text{x1} - \text{x2} .. note:: If tensor shapes do not match, they must be broadcastable to a common shape. Args: x1 (Tensor): First Tensor x2 (Tensor): Second Tensor
def add_docstring_fcn(method, descr): add_docstring(getattr(sail.Tensor, method), descr)