def get_saliency(img): #Calculates img saliency, using NVT algorithm (Itti, 1998) intensty = saliency.intensityConspicuity(img) gabor = saliency.gaborConspicuity(img, 4) im = saliency.makeNormalizedColorChannels(img) rg = saliency.rgConspicuity(im) by = saliency.byConspicuity(im) c = rg + by sal = 1./3 * (saliency.N(intensty) + saliency.N(c) + saliency.N(gabor)) sal = cv2.resize(sal, dsize=(img.shape[1],img.shape[0])) #sal = (sal + magno)/2 sal = sal.astype(np.uint8) return sal
img = np.array(img, dtype=np.uint8) img.resize([resolution[0], resolution[1], 3]) temp = np.copy(img[:,:,2]) img[:, :, 2] = img[:, :, 0] img[:, :, 0] = temp img = np.flipud(img) cv2.imshow('felipe', img) cv2.waitKey(2) #calculating saliency intensty = saliency.intensityConspicuity(img) gabor = saliency.gaborConspicuity(img, 4) im = saliency.makeNormalizedColorChannels(img) rg = saliency.rgConspicuity(im) by = saliency.byConspicuity(im) c = rg + by sal = 1./3 * (saliency.N(intensty) + saliency.N(c) + saliency.N(gabor)) sal = cv2.resize(sal, dsize=(img.shape[1],img.shape[0])) #sal = (sal + magno)/2 sal = sal.astype(np.uint8) # finding the most salient point #max_sal_arg = np.unravel_index(np.argmax(sal), sal.shape) #print(max_sal_arg) cv2.imshow('static sal', sal) cv2.waitKey(2) # move joints vrep.simxSetJointTargetPosition(clientID, joint_z,\