def write_ext_header (hdu, file, bhdu, ut,date,bscale,bzero,exptime,gain,rdnoise, datasec,detsec,ccdsec,ampsec,biassec, deadtime=None, framecnt=None): """Update the header values for the extension returns """ #if (status==0): status = saltkey.new("BSCALE",bscale,"Val=BSCALE*pix+BZERO",hdu,file,logfile) #if (status==0): status = saltkey.new("BZERO",bzero,"Val=BSCALE*pix+BZERO",hdu,file,logfile) saltkey.new("UTC-OBS",ut,"UTC start of observation",hdu,file) saltkey.new("TIME-OBS",ut,"UTC start of observation",hdu,file) saltkey.new("DATE-OBS",date,"Date of the observation",hdu,file) saltkey.new("EXPTIME",exptime,"Exposure time",hdu,file) saltkey.new("GAIN",gain,"Nominal CCD gain (e/ADU)",hdu,file) saltkey.new("RDNOISE",rdnoise,"Nominal readout noise in e",hdu,file) saltkey.new("CCDSUM", bhdu.header['CCDSUM'], 'On chip summation', hdu, file) saltkey.copy(hdu,bhdu,"DETSIZE") saltkey.new("DATASEC",datasec,"Data Section",hdu,file) saltkey.new("DETSEC",detsec,"Detector Section",hdu,file) saltkey.new("CCDSEC ",ccdsec,"CCD Section",hdu,file) saltkey.new("AMPSEC",ampsec,"Amplifier Section",hdu,file) saltkey.new("BIASSEC",biassec,"Bias Section",hdu,file) if deadtime: saltkey.new("DEADTIME",deadtime,"Milliseconds waiting for readout", hdu, file) if framecnt: saltkey.new("FRAMECNT",framecnt,"Frame counter", hdu, file) return hdu
def make_mosaic(struct, gap, xshift, yshift, rotation, interp_type='linear', boundary='constant', constant=0, geotran=True, fill=False, cleanup=True, log=None, verbose=False): """Given a SALT image struct, combine each of the individual amplifiers and apply the geometric CCD transformations to the image """ # get the name of the file infile = saltkey.getimagename(struct[0], base=True) outpath = './' # identify instrument instrume, keyprep, keygain, keybias, keyxtalk, keyslot = \ saltkey.instrumid(struct) # how many amplifiers? nsciext = saltkey.get('NSCIEXT', struct[0]) nextend = saltkey.get('NEXTEND', struct[0]) nccds = saltkey.get('NCCDS', struct[0]) amplifiers = nccds * 2 if nextend > nsciext: varframe = True else: varframe = False # CCD geometry coefficients if (instrume == 'RSS' or instrume == 'PFIS'): xsh = [0., xshift[0], 0., xshift[1]] ysh = [0., yshift[0], 0., yshift[1]] rot = [0., rotation[0], 0., rotation[1]] elif instrume == 'SALTICAM': xsh = [0., xshift[0], 0.] ysh = [0., yshift[0], 0.] rot = [0., rotation[0], 0] # how many extensions? nextend = saltkey.get('NEXTEND', struct[0]) # CCD on-chip binning xbin, ybin = saltkey.ccdbin(struct[0]) # create temporary primary extension outstruct = [] outstruct.append(struct[0]) # define temporary FITS file store tiled CCDs tilefile = saltio.tmpfile(outpath) tilefile += 'tile.fits' if varframe: tilehdu = [None] * (3 * int(nsciext / 2) + 1) else: tilehdu = [None] * int(nsciext / 2 + 1) tilehdu[0] = fits.PrimaryHDU() #tilehdu[0].header = struct[0].header if log: log.message('', with_stdout=verbose) # iterate over amplifiers, stich them to produce file of CCD images for i in range(int(nsciext / 2)): hdu = i * 2 + 1 # amplifier = hdu%amplifiers # if (amplifier == 0): amplifier = amplifiers # read DATASEC keywords datasec1 = saltkey.get('DATASEC', struct[hdu]) datasec2 = saltkey.get('DATASEC', struct[hdu + 1]) xdsec1, ydsec1 = saltstring.secsplit(datasec1) xdsec2, ydsec2 = saltstring.secsplit(datasec2) # read images imdata1 = saltio.readimage(struct, hdu) imdata2 = saltio.readimage(struct, hdu + 1) # tile 2n amplifiers to yield n CCD images outdata = numpy.zeros((ydsec1[1] + abs(ysh[i + 1] / ybin), xdsec1[1] + xdsec2[1] + abs(xsh[i + 1] / xbin)), numpy.float32) # set up the variance frame if varframe: vardata = outdata.copy() vdata1 = saltio.readimage(struct, struct[hdu].header['VAREXT']) vdata2 = saltio.readimage(struct, struct[hdu + 1].header['VAREXT']) bpmdata = outdata.copy() bdata1 = saltio.readimage(struct, struct[hdu].header['BPMEXT']) bdata2 = saltio.readimage(struct, struct[hdu + 1].header['BPMEXT']) x1 = xdsec1[0] - 1 if x1 != 0: msg = 'The data in %s have not been trimmed prior to mosaicking.' \ % infile log.error(msg) if xsh[i + 1] < 0: x1 += abs(xsh[i + 1] / xbin) x2 = x1 + xdsec1[1] y1 = ydsec1[0] - 1 if ysh[i + 1] < 0: y1 += abs(ysh[i + 1] / ybin) y2 = y1 + ydsec1[1] outdata[y1:y2, x1:x2] =\ imdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] if varframe: vardata[y1:y2, x1:x2] =\ vdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] bpmdata[y1:y2, x1:x2] =\ bdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] x1 = x2 x2 = x1 + xdsec2[1] y1 = ydsec2[0] - 1 if ysh[i + 1] < 0: y1 += abs(ysh[i + 1] / ybin) y2 = y1 + ydsec2[1] outdata[y1:y2, x1:x2] =\ imdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] if varframe: vardata[y1:y2, x1:x2] =\ vdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] bpmdata[y1:y2, x1:x2] =\ bdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] # size of new image naxis1 = str(xdsec1[1] + xdsec2[1]) naxis2 = str(ydsec1[1]) # add image and keywords to HDU list tilehdu[i + 1] = fits.ImageHDU(outdata) tilehdu[i + 1].header = struct[hdu].header #tilehdu[ # i + 1].header['DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' if varframe: vext = i + 1 + int(nsciext / 2.) tilehdu[vext] = fits.ImageHDU(vardata) #tilehdu[vext].header = struct[struct[hdu].header['VAREXT']].header #tilehdu[vext].header[ # 'DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' bext = i + 1 + 2 * int(nsciext / 2.) tilehdu[bext] = fits.ImageHDU(bpmdata) #tilehdu[bext].header = struct[struct[hdu].header['BPMEXT']].header #tilehdu[bext].header[ # 'DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' # image tile log message #1 if log: message = os.path.basename(infile) + '[' + str(hdu) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + '] --> ' message += os.path.basename(tilefile) + '[' + str(i + 1) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + ']' log.message(message, with_stdout=verbose, with_header=False) message = os.path.basename(infile) + '[' + str(hdu + 1) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + '] --> ' message += os.path.basename(tilefile) + '[' + str(i + 1) + '][' message += str(xdsec1[1] + 1) + ':' + \ str(xdsec1[1] + xdsec2[1]) + ',' message += str(ydsec2[0]) + ':' + str(ydsec2[1]) + ']' log.message(message, with_stdout=verbose, with_header=False) # write temporary file of tiled CCDs hdulist = fits.HDUList(tilehdu) hdulist.writeto(tilefile) # iterate over CCDs, transform and rotate images yrot = [None] * 4 xrot = [None] * 4 tranfile = [' '] tranhdu = [0] if varframe: tranfile = [''] * (3 * int(nsciext / 2) + 1) tranhdu = [0] * (3 * int(nsciext / 2) + 1) else: tranfile = [''] * int(nsciext / 2 + 1) tranhdu = [0] * int(nsciext / 2 + 1) # this is hardwired for SALT where the second CCD is considered the # fiducial for hdu in range(1, int(nsciext / 2 + 1)): tranfile[hdu] = saltio.tmpfile(outpath) tranfile[hdu] += 'tran.fits' if varframe: tranfile[hdu + nccds] = saltio.tmpfile(outpath) + 'tran.fits' tranfile[hdu + 2 * nccds] = saltio.tmpfile(outpath) + 'tran.fits' ccd = hdu % nccds if (ccd == 0): ccd = nccds # correct rotation for CCD binning yrot[ccd] = rot[ccd] * ybin / xbin xrot[ccd] = rot[ccd] * xbin / ybin dxshift = xbin * int(float(int(gap) / xbin) + 0.5) - gap # transformation using geotran IRAF task # if (ccd == 1): if (ccd != 2): if geotran: message = '\nSALTMOSAIC -- geotran ' + tilefile + \ '[' + str(ccd) + '] ' + tranfile[hdu] message += ' \"\" \"\" xshift=' + \ str((xsh[ccd] + (2 - ccd) * dxshift) / xbin) + ' ' message += 'yshift=' + \ str(ysh[ccd] / ybin) + ' xrotation=' + str(xrot[ccd]) + ' ' message += 'yrotation=' + \ str(yrot[ccd]) + ' xmag=1 ymag=1 xmin=\'INDEF\'' message += 'xmax=\'INDEF\' ymin=\'INDEF\' ymax=\'INDEF\' ' message += 'ncols=\'INDEF\' ' message += 'nlines=\'INDEF\' verbose=\'no\' ' message += 'fluxconserve=\'yes\' nxblock=2048 ' message += 'nyblock=2048 interpolant=\'' + \ interp_type + '\' boundary=\'constant\' constant=0' log.message(message, with_stdout=verbose) yd, xd = tilehdu[ccd].data.shape ncols = 'INDEF' # ncols=xd+abs(xsh[ccd]/xbin) nlines = 'INDEF' # nlines=yd+abs(ysh[ccd]/ybin) geo_xshift = xsh[ccd] + (2 - ccd) * dxshift / xbin geo_yshift = ysh[ccd] / ybin iraf.images.immatch.geotran(tilefile + "[" + str(ccd) + "]", tranfile[hdu], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) if varframe: var_infile = tilefile + "[" + str(ccd + nccds) + "]" iraf.images.immatch.geotran(var_infile, tranfile[hdu + nccds], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) var2_infile = tilefile + "[" + str(ccd + 2 * nccds) + "]" iraf.images.immatch.geotran(var2_infile, tranfile[hdu + 2 * nccds], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) # open the file and copy the data to tranhdu tstruct = fits.open(tranfile[hdu]) tranhdu[hdu] = tstruct[0].data tstruct.close() if varframe: tranhdu[ hdu + nccds] = fits.open( tranfile[ hdu + nccds])[0].data tranhdu[ hdu + 2 * nccds] = fits.open( tranfile[ hdu + 2 * nccds])[0].data else: log.message( "Transform CCD #%i using dx=%s, dy=%s, rot=%s" % (ccd, xsh[ccd] / 2.0, ysh[ccd] / 2.0, xrot[ccd]), with_stdout=verbose, with_header=False) tranhdu[hdu] = geometric_transform( tilehdu[ccd].data, tran_func, prefilter=False, order=1, extra_arguments=( xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) tstruct = fits.PrimaryHDU(tranhdu[hdu]) tstruct.writeto(tranfile[hdu]) if varframe: tranhdu[hdu + nccds] = geometric_transform( tilehdu[hdu + 3].data, tran_func, prefilter=False, order=1, extra_arguments=( xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) tranhdu[hdu + 2 * nccds] = geometric_transform( tilehdu[hdu + 6].data, tran_func, prefilter=False, order=1, extra_arguments=( xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) else: log.message( "Transform CCD #%i using dx=%s, dy=%s, rot=%s" % (ccd, 0, 0, 0), with_stdout=verbose, with_header=False) tranhdu[hdu] = tilehdu[ccd].data if varframe: tranhdu[hdu + nccds] = tilehdu[ccd + nccds].data tranhdu[hdu + 2 * nccds] = tilehdu[ccd + 2 * nccds].data # open outfile if varframe: outlist = 4 * [None] else: outlist = 2 * [None] #outlist[0] = struct[0].copy() outlist[0] = fits.PrimaryHDU() outlist[0].header = struct[0].header naxis1 = int(gap / xbin * (nccds - 1)) naxis2 = 0 for i in range(1, nccds + 1): yw, xw = tranhdu[i].shape naxis1 += xw + int(abs(xsh[ccd] / xbin)) + 1 naxis2 = max(naxis2, yw) outdata = numpy.zeros((naxis2, naxis1), numpy.float32) outdata.shape = naxis2, naxis1 if varframe: vardata = outdata * 0 bpmdata = outdata * 0 + 1 # iterate over CCDs, stich them to produce a full image hdu = 0 totxshift = 0 for hdu in range(1, nccds + 1): # read DATASEC keywords ydsec, xdsec = tranhdu[hdu].shape # define size and shape of final image # tile CCDs to yield mosaiced image x1 = int((hdu - 1) * (xdsec + gap / xbin)) + int(totxshift) x2 = xdsec + x1 y1 = int(0) y2 = int(ydsec) outdata[y1:y2, x1:x2] = tranhdu[hdu] totxshift += int(abs(xsh[hdu] / xbin)) + 1 if varframe: vardata[y1:y2, x1:x2] = tranhdu[hdu + nccds] bpmdata[y1:y2, x1:x2] = tranhdu[hdu + 2 * nccds] # make sure to cover up all the gaps include bad areas if varframe: baddata = (outdata == 0) baddata = nd.maximum_filter(baddata, size=3) bpmdata[baddata] = 1 # fill in the gaps if requested if fill: if varframe: outdata = fill_gaps(outdata, 0) else: outdata = fill_gaps(outdata, 0) # add to the file outlist[1] = fits.ImageHDU(outdata) if varframe: outlist[2] = fits.ImageHDU(vardata,name='VAR') outlist[3] = fits.ImageHDU(bpmdata,name='BPM') # create the image structure outstruct = fits.HDUList(outlist) # update the head informaation # housekeeping keywords saltkey.put('NEXTEND', 2, outstruct[0]) saltkey.new('EXTNAME', 'SCI', 'Extension name', outstruct[1]) saltkey.new('EXTVER', 1, 'Extension number', outstruct[1]) if varframe: saltkey.new('VAREXT', 2, 'Variance frame extension', outstruct[1]) saltkey.new('BPMEXT', 3, 'BPM Extension', outstruct[1]) try: saltkey.copy(struct[1], outstruct[1], 'CCDSUM') except: pass # Add keywords associated with geometry saltkey.new('SGEOMGAP', gap, 'SALT Chip Gap', outstruct[0]) c1str = '{:3.2f} {:3.2f} {:3.4f}'.format(xshift[0], yshift[0], rotation[0]) saltkey.new('SGEOM1', c1str, 'SALT Chip 1 Transform', outstruct[0]) c2str = '{:3.2f} {:3.2f} {:3.4f}'.format(xshift[1], yshift[1], rotation[1]) saltkey.new('SGEOM2', c2str, 'SALT Chip 2 Transform', outstruct[0]) # WCS keywords saltkey.new('CRPIX1', 0, 'WCS: X reference pixel', outstruct[1]) saltkey.new('CRPIX2', 0, 'WCS: Y reference pixel', outstruct[1]) saltkey.new( 'CRVAL1', float(xbin), 'WCS: X reference coordinate value', outstruct[1]) saltkey.new( 'CRVAL2', float(ybin), 'WCS: Y reference coordinate value', outstruct[1]) saltkey.new('CDELT1', float(xbin), 'WCS: X pixel size', outstruct[1]) saltkey.new('CDELT2', float(ybin), 'WCS: Y pixel size', outstruct[1]) saltkey.new('CTYPE1', 'pixel', 'X type', outstruct[1]) saltkey.new('CTYPE2', 'pixel', 'Y type', outstruct[1]) # cleanup temporary files if cleanup: for tfile in tranfile: if os.path.isfile(tfile): saltio.delete(tfile) if os.path.isfile(tilefile): status = saltio.delete(tilefile) # return the file return outstruct
def make_mosaic(struct, gap, xshift, yshift, rotation, interp_type='linear', boundary='constant', constant=0, geotran=True, fill=False, cleanup=True, log=None, verbose=False): """Given a SALT image struct, combine each of the individual amplifiers and apply the geometric CCD transformations to the image """ # get the name of the file infile = saltkey.getimagename(struct[0], base=True) outpath = './' # identify instrument instrume, keyprep, keygain, keybias, keyxtalk, keyslot = \ saltkey.instrumid(struct) # how many amplifiers? nsciext = saltkey.get('NSCIEXT', struct[0]) nextend = saltkey.get('NEXTEND', struct[0]) nccds = saltkey.get('NCCDS', struct[0]) amplifiers = nccds * 2 if nextend > nsciext: varframe = True else: varframe = False # CCD geometry coefficients if (instrume == 'RSS' or instrume == 'PFIS'): xsh = [0., xshift[0], 0., xshift[1]] ysh = [0., yshift[0], 0., yshift[1]] rot = [0., rotation[0], 0., rotation[1]] elif instrume == 'SALTICAM': xsh = [0., xshift[0], 0.] ysh = [0., yshift[0], 0.] rot = [0., rotation[0], 0] # how many extensions? nextend = saltkey.get('NEXTEND', struct[0]) # CCD on-chip binning xbin, ybin = saltkey.ccdbin(struct[0]) # create temporary primary extension outstruct = [] outstruct.append(struct[0]) # define temporary FITS file store tiled CCDs tilefile = saltio.tmpfile(outpath) tilefile += 'tile.fits' if varframe: tilehdu = [None] * (3 * int(nsciext / 2) + 1) else: tilehdu = [None] * int(nsciext / 2 + 1) tilehdu[0] = fits.PrimaryHDU() #tilehdu[0].header = struct[0].header if log: log.message('', with_stdout=verbose) # iterate over amplifiers, stich them to produce file of CCD images for i in range(int(nsciext / 2)): hdu = i * 2 + 1 # amplifier = hdu%amplifiers # if (amplifier == 0): amplifier = amplifiers # read DATASEC keywords datasec1 = saltkey.get('DATASEC', struct[hdu]) datasec2 = saltkey.get('DATASEC', struct[hdu + 1]) xdsec1, ydsec1 = saltstring.secsplit(datasec1) xdsec2, ydsec2 = saltstring.secsplit(datasec2) # read images imdata1 = saltio.readimage(struct, hdu) imdata2 = saltio.readimage(struct, hdu + 1) # tile 2n amplifiers to yield n CCD images outdata = numpy.zeros( (int(ydsec1[1] + abs(ysh[i + 1] / ybin)), int(xdsec1[1] + xdsec2[1] + abs(xsh[i + 1] / xbin))), numpy.float32) # set up the variance frame if varframe: vardata = outdata.copy() vdata1 = saltio.readimage(struct, struct[hdu].header['VAREXT']) vdata2 = saltio.readimage(struct, struct[hdu + 1].header['VAREXT']) bpmdata = outdata.copy() bdata1 = saltio.readimage(struct, struct[hdu].header['BPMEXT']) bdata2 = saltio.readimage(struct, struct[hdu + 1].header['BPMEXT']) x1 = xdsec1[0] - 1 if x1 != 0: msg = 'The data in %s have not been trimmed prior to mosaicking.' \ % infile log.error(msg) if xsh[i + 1] < 0: x1 += int(abs(xsh[i + 1] / xbin)) x2 = x1 + xdsec1[1] y1 = ydsec1[0] - 1 if ysh[i + 1] < 0: y1 += int(abs(ysh[i + 1] / ybin)) y2 = y1 + ydsec1[1] outdata[y1:y2, x1:x2] =\ imdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] if varframe: vardata[y1:y2, x1:x2] =\ vdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] bpmdata[y1:y2, x1:x2] =\ bdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] x1 = x2 x2 = x1 + xdsec2[1] y1 = ydsec2[0] - 1 if ysh[i + 1] < 0: y1 += abs(ysh[i + 1] / ybin) y2 = y1 + ydsec2[1] outdata[y1:y2, x1:x2] =\ imdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] if varframe: vardata[y1:y2, x1:x2] =\ vdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] bpmdata[y1:y2, x1:x2] =\ bdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] # size of new image naxis1 = str(xdsec1[1] + xdsec2[1]) naxis2 = str(ydsec1[1]) # add image and keywords to HDU list tilehdu[i + 1] = fits.ImageHDU(outdata) tilehdu[i + 1].header = struct[hdu].header #tilehdu[ # i + 1].header['DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' if varframe: vext = i + 1 + int(nsciext / 2.) tilehdu[vext] = fits.ImageHDU(vardata) #tilehdu[vext].header = struct[struct[hdu].header['VAREXT']].header #tilehdu[vext].header[ # 'DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' bext = i + 1 + 2 * int(nsciext / 2.) tilehdu[bext] = fits.ImageHDU(bpmdata) #tilehdu[bext].header = struct[struct[hdu].header['BPMEXT']].header #tilehdu[bext].header[ # 'DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' # image tile log message #1 if log: message = os.path.basename(infile) + '[' + str(hdu) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + '] --> ' message += os.path.basename(tilefile) + '[' + str(i + 1) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + ']' log.message(message, with_stdout=verbose, with_header=False) message = os.path.basename(infile) + '[' + str(hdu + 1) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + '] --> ' message += os.path.basename(tilefile) + '[' + str(i + 1) + '][' message += str(xdsec1[1] + 1) + ':' + \ str(xdsec1[1] + xdsec2[1]) + ',' message += str(ydsec2[0]) + ':' + str(ydsec2[1]) + ']' log.message(message, with_stdout=verbose, with_header=False) # write temporary file of tiled CCDs hdulist = fits.HDUList(tilehdu) hdulist.writeto(tilefile) # iterate over CCDs, transform and rotate images yrot = [None] * 4 xrot = [None] * 4 tranfile = [' '] tranhdu = [0] if varframe: tranfile = [''] * (3 * int(nsciext / 2) + 1) tranhdu = [0] * (3 * int(nsciext / 2) + 1) else: tranfile = [''] * int(nsciext / 2 + 1) tranhdu = [0] * int(nsciext / 2 + 1) # this is hardwired for SALT where the second CCD is considered the # fiducial for hdu in range(1, int(nsciext / 2 + 1)): tranfile[hdu] = saltio.tmpfile(outpath) tranfile[hdu] += 'tran.fits' if varframe: tranfile[hdu + nccds] = saltio.tmpfile(outpath) + 'tran.fits' tranfile[hdu + 2 * nccds] = saltio.tmpfile(outpath) + 'tran.fits' ccd = hdu % nccds if (ccd == 0): ccd = nccds # correct rotation for CCD binning yrot[ccd] = rot[ccd] * ybin / xbin xrot[ccd] = rot[ccd] * xbin / ybin dxshift = xbin * int(float(int(gap) / xbin) + 0.5) - gap # transformation using geotran IRAF task # if (ccd == 1): if (ccd != 2): if geotran: message = '\nSALTMOSAIC -- geotran ' + tilefile + \ '[' + str(ccd) + '] ' + tranfile[hdu] message += ' \"\" \"\" xshift=' + \ str((xsh[ccd] + (2 - ccd) * dxshift) / xbin) + ' ' message += 'yshift=' + \ str(ysh[ccd] / ybin) + ' xrotation=' + str(xrot[ccd]) + ' ' message += 'yrotation=' + \ str(yrot[ccd]) + ' xmag=1 ymag=1 xmin=\'INDEF\'' message += 'xmax=\'INDEF\' ymin=\'INDEF\' ymax=\'INDEF\' ' message += 'ncols=\'INDEF\' ' message += 'nlines=\'INDEF\' verbose=\'no\' ' message += 'fluxconserve=\'yes\' nxblock=2048 ' message += 'nyblock=2048 interpolant=\'' + \ interp_type + '\' boundary=\'constant\' constant=0' log.message(message, with_stdout=verbose) yd, xd = tilehdu[ccd].data.shape ncols = 'INDEF' # ncols=xd+abs(xsh[ccd]/xbin) nlines = 'INDEF' # nlines=yd+abs(ysh[ccd]/ybin) geo_xshift = xsh[ccd] + (2 - ccd) * dxshift / xbin geo_yshift = ysh[ccd] / ybin iraf.images.immatch.geotran(tilefile + "[" + str(ccd) + "]", tranfile[hdu], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) if varframe: var_infile = tilefile + "[" + str(ccd + nccds) + "]" iraf.images.immatch.geotran(var_infile, tranfile[hdu + nccds], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) var2_infile = tilefile + "[" + str(ccd + 2 * nccds) + "]" iraf.images.immatch.geotran(var2_infile, tranfile[hdu + 2 * nccds], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) # open the file and copy the data to tranhdu tstruct = fits.open(tranfile[hdu]) tranhdu[hdu] = tstruct[0].data tstruct.close() if varframe: tranhdu[hdu + nccds] = fits.open(tranfile[hdu + nccds])[0].data tranhdu[hdu + 2 * nccds] = fits.open( tranfile[hdu + 2 * nccds])[0].data else: log.message("Transform CCD #%i using dx=%s, dy=%s, rot=%s" % (ccd, xsh[ccd] / 2.0, ysh[ccd] / 2.0, xrot[ccd]), with_stdout=verbose, with_header=False) tranhdu[hdu] = geometric_transform( tilehdu[ccd].data, tran_func, prefilter=False, order=1, extra_arguments=(xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) tstruct = fits.PrimaryHDU(tranhdu[hdu]) tstruct.writeto(tranfile[hdu]) if varframe: tranhdu[hdu + nccds] = geometric_transform( tilehdu[hdu + 3].data, tran_func, prefilter=False, order=1, extra_arguments=(xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) tranhdu[hdu + 2 * nccds] = geometric_transform( tilehdu[hdu + 6].data, tran_func, prefilter=False, order=1, extra_arguments=(xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) else: log.message("Transform CCD #%i using dx=%s, dy=%s, rot=%s" % (ccd, 0, 0, 0), with_stdout=verbose, with_header=False) tranhdu[hdu] = tilehdu[ccd].data if varframe: tranhdu[hdu + nccds] = tilehdu[ccd + nccds].data tranhdu[hdu + 2 * nccds] = tilehdu[ccd + 2 * nccds].data # open outfile if varframe: outlist = 4 * [None] else: outlist = 2 * [None] #outlist[0] = struct[0].copy() outlist[0] = fits.PrimaryHDU() outlist[0].header = struct[0].header naxis1 = int(gap / xbin * (nccds - 1)) naxis2 = 0 for i in range(1, nccds + 1): yw, xw = tranhdu[i].shape naxis1 += xw + int(abs(xsh[ccd] / xbin)) + 1 naxis2 = max(naxis2, yw) outdata = numpy.zeros((naxis2, naxis1), numpy.float32) outdata.shape = naxis2, naxis1 if varframe: vardata = outdata * 0 bpmdata = outdata * 0 + 1 # iterate over CCDs, stich them to produce a full image hdu = 0 totxshift = 0 for hdu in range(1, nccds + 1): # read DATASEC keywords ydsec, xdsec = tranhdu[hdu].shape # define size and shape of final image # tile CCDs to yield mosaiced image x1 = int((hdu - 1) * (xdsec + gap / xbin)) + int(totxshift) x2 = xdsec + x1 y1 = int(0) y2 = int(ydsec) outdata[y1:y2, x1:x2] = tranhdu[hdu] totxshift += int(abs(xsh[hdu] / xbin)) + 1 if varframe: vardata[y1:y2, x1:x2] = tranhdu[hdu + nccds] bpmdata[y1:y2, x1:x2] = tranhdu[hdu + 2 * nccds] # make sure to cover up all the gaps include bad areas if varframe: baddata = (outdata == 0) baddata = nd.maximum_filter(baddata, size=3) bpmdata[baddata] = 1 # fill in the gaps if requested if fill: if varframe: outdata = fill_gaps(outdata, 0) else: outdata = fill_gaps(outdata, 0) # add to the file outlist[1] = fits.ImageHDU(outdata) if varframe: outlist[2] = fits.ImageHDU(vardata, name='VAR') outlist[3] = fits.ImageHDU(bpmdata, name='BPM') # create the image structure outstruct = fits.HDUList(outlist) # update the head informaation # housekeeping keywords saltkey.put('NEXTEND', 2, outstruct[0]) saltkey.new('EXTNAME', 'SCI', 'Extension name', outstruct[1]) saltkey.new('EXTVER', 1, 'Extension number', outstruct[1]) if varframe: saltkey.new('VAREXT', 2, 'Variance frame extension', outstruct[1]) saltkey.new('BPMEXT', 3, 'BPM Extension', outstruct[1]) try: saltkey.copy(struct[1], outstruct[1], 'CCDSUM') except: pass # Add keywords associated with geometry saltkey.new('SGEOMGAP', gap, 'SALT Chip Gap', outstruct[0]) c1str = '{:3.2f} {:3.2f} {:3.4f}'.format(xshift[0], yshift[0], rotation[0]) saltkey.new('SGEOM1', c1str, 'SALT Chip 1 Transform', outstruct[0]) c2str = '{:3.2f} {:3.2f} {:3.4f}'.format(xshift[1], yshift[1], rotation[1]) saltkey.new('SGEOM2', c2str, 'SALT Chip 2 Transform', outstruct[0]) # WCS keywords saltkey.new('CRPIX1', 0, 'WCS: X reference pixel', outstruct[1]) saltkey.new('CRPIX2', 0, 'WCS: Y reference pixel', outstruct[1]) saltkey.new('CRVAL1', float(xbin), 'WCS: X reference coordinate value', outstruct[1]) saltkey.new('CRVAL2', float(ybin), 'WCS: Y reference coordinate value', outstruct[1]) saltkey.new('CDELT1', float(xbin), 'WCS: X pixel size', outstruct[1]) saltkey.new('CDELT2', float(ybin), 'WCS: Y pixel size', outstruct[1]) saltkey.new('CTYPE1', 'pixel', 'X type', outstruct[1]) saltkey.new('CTYPE2', 'pixel', 'Y type', outstruct[1]) # cleanup temporary files if cleanup: for tfile in tranfile: if os.path.isfile(tfile): saltio.delete(tfile) if os.path.isfile(tilefile): status = saltio.delete(tilefile) # return the file return outstruct