def specselfid(images, outimages, outpref, refimage=None, ystart='middlerow', rstep=3, clobber=False, logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # set up the variables infiles = [] outfiles = [] # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outfiles = saltio.listparse( 'Outimages', outimages, outpref, infiles, '') # set up defaults if saltio.checkfornone(refimage) is not None: rhdu = saltio.openfits(refimage) else: refimage = None # read in rectify each image for img, oimg, in zip(infiles, outfiles): hdu = saltio.openfits(img) log.message( 'Performing self-identification and rectification on %s' % img) for i in range(1, len(hdu)): if hdu[i].name == 'SCI': if refimage is None: sdata = hdu[i].data else: sdata = rhdu[i].data hdu[i].data = selfid( hdu[i].data, sdata, ystart=ystart, rstep=rstep) if saltkey.found('VAREXT', hdu[i]): varext = saltkey.get('VAREXT', hdu[i]) hdu[varext].data = selfid( hdu[varext].data, sdata, ystart=ystart, rstep=rstep) if saltkey.found('BPMEXT', hdu[i]): bpmext = saltkey.get('BPMEXT', hdu[i]) hdu[bpmext].data = selfid( hdu[bpmext].data, sdata, ystart=ystart, rstep=rstep) # write out the oimg saltio.writefits(hdu, oimg, clobber=clobber)
def flat(struct,fstruct): """flat applies a flatfield to salt CCD data return struct """ # Determine the number of extensions nextend=len(struct) #flat field the data for i in range(nextend): if struct[i].name=='SCI' or len(struct)==1: #Account for variance frames if saltkey.found('VAREXT', struct[i]): varext=saltkey.get('VAREXT', struct[i]) if saltkey.found('VAREXT', fstruct[i]): fvarext=saltkey.get('VAREXT', fstruct[i]) fvar=fstruct[fvarext].data else: fvar=0 struct[varext].data=(struct[i].data/fstruct[i].data)*(struct[varext].data/struct[i].data**2+fvar/fstruct[i].data**2) #flatten the data struct[i].data = struct[i].data / fstruct[i].data return struct
def stack(hdu): """Convert MEF HRS data into a single extension. """ #set the detector detname=saltkey.get('DETNAM', hdu[0]) print detname if detname=='08443-03-01' or detname=='HRDET': detector='hrdet' elif detname=='04434-23-02' or detname=='HBDET': detector='hbdet' else: raise SaltError('%s is not an HRS detector' % detnam) print detector #get key parameters try: nccd=saltkey.get('CCDAMPS', hdu[0]) except: nccd=saltkey.get('CCDNAMPS', hdu[0]) #determine the shape of the CCD if detector=='hbdet': toty=hdu[1].shape[0] totx=hdu[1].shape[1]+hdu[2].shape[1] elif detector=='hrdet': toty=hdu[1].shape[0]+hdu[3].shape[0] totx=hdu[1].shape[1]+hdu[2].shape[1] data=np.zeros((toty,totx),np.float32) #embed the ccds for j in range(nccd): i=j+1 y2,x2=hdu[i].data.shape if detector=='hbdet': if i==1: y1=0 x1=0 y2=y2 x2=x2 else: y1=0 x1=x2 x2=x1+x2 elif detector=='hrdet': y1=0 if i%2==1: x1=0 if i%2==0: x1=x2 x2=x1+x2 if i>2: y1=y2 y2=y1+y2 data[y1:y2,x1:x2]=hdu[i].data ihdu = pyfits.ImageHDU(data) nhdu = pyfits.HDUList([hdu[0], ihdu]) return nhdu
def stack(hdu): """Convert MEF HRS data into a single extension. """ #set the detector detname = saltkey.get('DETNAM', hdu[0]) print detname if detname == '08443-03-01' or detname == 'HRDET': detector = 'hrdet' elif detname == '04434-23-02' or detname == 'HBDET': detector = 'hbdet' else: raise SaltError('%s is not an HRS detector' % detnam) print detector #get key parameters try: nccd = saltkey.get('CCDAMPS', hdu[0]) except: nccd = saltkey.get('CCDNAMPS', hdu[0]) #determine the shape of the CCD if detector == 'hbdet': toty = hdu[1].shape[0] totx = hdu[1].shape[1] + hdu[2].shape[1] elif detector == 'hrdet': toty = hdu[1].shape[0] + hdu[3].shape[0] totx = hdu[1].shape[1] + hdu[2].shape[1] data = np.zeros((toty, totx), np.float32) #embed the ccds for j in range(nccd): i = j + 1 y2, x2 = hdu[i].data.shape if detector == 'hbdet': if i == 1: y1 = 0 x1 = 0 y2 = y2 x2 = x2 else: y1 = 0 x1 = x2 x2 = x1 + x2 elif detector == 'hrdet': y1 = 0 if i % 2 == 1: x1 = 0 if i % 2 == 0: x1 = x2 x2 = x1 + x2 if i > 2: y1 = y2 y2 = y1 + y2 data[y1:y2, x1:x2] = hdu[i].data ihdu = pyfits.ImageHDU(data) nhdu = pyfits.HDUList([hdu[0], ihdu]) return nhdu
def specselfid(images, outimages, outpref, refimage=None, ystart='middlerow', rstep=3, clobber=False, logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # set up the variables infiles = [] outfiles = [] # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outfiles = saltio.listparse('Outimages', outimages, outpref, infiles, '') # set up defaults if saltio.checkfornone(refimage) is not None: rhdu = saltio.openfits(refimage) else: refimage = None # read in rectify each image for img, oimg, in zip(infiles, outfiles): hdu = saltio.openfits(img) log.message( 'Performing self-identification and rectification on %s' % img) for i in range(1, len(hdu)): if hdu[i].name == 'SCI': if refimage is None: sdata = hdu[i].data else: sdata = rhdu[i].data hdu[i].data = selfid(hdu[i].data, sdata, ystart=ystart, rstep=rstep) if saltkey.found('VAREXT', hdu[i]): varext = saltkey.get('VAREXT', hdu[i]) hdu[varext].data = selfid(hdu[varext].data, sdata, ystart=ystart, rstep=rstep) if saltkey.found('BPMEXT', hdu[i]): bpmext = saltkey.get('BPMEXT', hdu[i]) hdu[bpmext].data = selfid(hdu[bpmext].data, sdata, ystart=ystart, rstep=rstep) # write out the oimg saltio.writefits(hdu, oimg, clobber=clobber)
def extract(hdu, ext=1, method='normal', section=[], minsize=3.0, thresh=3.0, convert=True): """For a given image, extract a 1D spectra from the image and write the spectra to the output file """ ap_list = [] i = ext if hdu[i].name == 'SCI': # set up the data, variance, and bad pixel frames # first step is to find the region to extract data_arr = hdu[i].data try: var_arr = hdu[hdu[i].header['VAREXT']].data except: var_arr = None try: bpm_arr = hdu[hdu[i].header['BPMEXT']].data except: bpm_arr = None var_arr = None bpm_arr = None xarr = np.arange(len(data_arr[0])) # convert using the WCS information try: w0 = saltkey.get('CRVAL1', hdu[i]) dw = saltkey.get('CD1_1', hdu[i]) except Exception as e: msg = 'Error on Ext %i: %s' % (i, e) raise SALTSpecError(msg) warr = w0 + dw * xarr # convert from air to vacuum if convert: warr = Spectrum.air2vac(warr) # set up the sections in case of findobj if section is None: section = findobj.findObjects( data_arr, method='median', specaxis=1, minsize=minsize, thresh=thresh, niter=5) # extract all of the regions for sec in section: ap = apext.apext(warr, data_arr, ivar=var_arr) y1, y2 = sec ap.flatten(y1, y2) ap_list.append(ap) return ap_list
def clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=None, ampccd=2, xdict=[], subover=True,trim=True, subbias=False, bstruct=None, median=False, function='polynomial',order=3,rej_lo=3,rej_hi=3,niter=10, plotover=False, log=None, verbose=True): infile=struct #prepare the files struct=prepare(struct, createvar=createvar, badpixelstruct=badpixelstruct) #reset the names in the structures for i in range(1,len(struct)): struct[i].name=struct[i].header['EXTNAME'] #gain correct the files usedb=False if dblist: usedb=True struct=gain(struct, mult=mult,usedb=usedb, dblist=dblist, ampccd=ampccd, log=log, verbose=verbose) #xtalk correct the files usedb=False if xdict: obsdate=saltkey.get('DATE-OBS', struct[0]) try: obsdate=int('%s%s%s' % (obsdate[0:4],obsdate[5:7], obsdate[8:])) xkey=np.array(xdict.keys()) date=xkey[abs(xkey-obsdate).argmin()] xcoeff=xdict[date] except Exception,e : msg='WARNING--Can not find xtalk coefficient for %s because %s' % (e, infile) if log: log.warning(msg) xcoeff=xdict[xdict.keys()[-1]]
def surface_fit(struct,order=3, mask=True, minlevel=0): """Fit a surface to an image return struct """ # Determine the number of extensions nextend=len(struct) #flat field the data for i in range(nextend): if struct[i].name=='SCI' or len(struct)==1: #create the median image if mask: bpmext = saltkey.get('BPMEXT', struct[i]) mask_arr = (struct[bpmext].data == 0) * (struct[i].data > minlevel) else: mask_arr = (struct[i].data < minlevel) #create the data coef=fit_surface(struct[i].data, mask=mask_arr, xorder=order, yorder=order, xyorder=0) y, x = np.indices(struct[i].data.shape) sf=surface(coef, xorder=order, yorder=order, xyorder=0) print coef struct[i].data=sf(x,y) #Account for variance frames if mask: struct[bpmext].data = struct[bpmext].data*0 return struct
def saltprepare(images,outimages,outpref,createvar=False, badpixelimage=None, clobber=True,logfile='salt.log',verbose=True): with logging(logfile,debug) as log: # Check the input images infiles = saltio.argunpack ('Input',images) # create list of output files outfiles=saltio.listparse('Outfile', outimages, outpref,infiles,'') #verify that the input and output lists are the same length saltio.comparelists(infiles,outfiles,'Input','output') # open the badpixel image if saltio.checkfornone(badpixelimage) is None: badpixelstruct=None else: try: badpixelstruct = saltio.openfits(badpixelimage) except saltio.SaltIOError,e: msg='badpixel image must be specificied\n %s' % e raise SaltError(msg) # open each raw image file for img, oimg, in zip(infiles, outfiles): #open the fits file struct=saltio.openfits(img) #if createvar, throw a warning if it is using slotmode if saltkey.fastmode(saltkey.get('DETMODE', struct[0])) and createvar: msg='Creating variance frames for slotmode data in %s' % img log.warning(msg) # identify instrument instrume,keyprep,keygain,keybias,keyxtalk,keyslot = saltkey.instrumid(struct) # has file been prepared already? try: key = struct[0].header[keyprep] message = 'ERROR -- SALTPREPARE: File ' + infile message += ' has already been prepared' raise SaltError(message) except: pass # prepare file struct=prepare(struct,createvar=createvar, badpixelstruct=badpixelstruct) # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0],keyprep, 'File prepared for IRAF', hist) # write FITS file saltio.writefits(struct,oimg, clobber=clobber) saltio.closefits(struct) message = 'SALTPREPARE -- %s => %s' % (img, oimg) log.message(message, with_header=False)
def illum_cor(struct,mbox): """Apply an illumination correction to a set of images return struct """ # Determine the number of extensions nextend=len(struct) #flat field the data for i in range(nextend): if struct[i].name=='SCI' or len(struct)==1: #create the median image mdata=median_filter(struct[i].data, size=(mbox, mbox)) #create the data struct[i].data=struct[i].data/mdata #Account for variance frames if saltkey.found('VAREXT', struct[i]): varext=saltkey.get('VAREXT', struct[i]) struct[varext].data=struct[varext].data/mdata return struct
def checkforpropid(image,propids): """subroutine to check to see if the propid keyword exists returns status """ #open up the image struct=pyfits.open(image, mode='update') if struct: #get proposal code propid=saltkey.get('PROPID', struct[0]) #check to see if it is none if saltio.checkfornone(propid) is None or propid is 'None': message='\nNo value in PROPID keyword for %s' % image raise SaltError(message) #check to see if it is an eng or cal proposal if propid.count('ENG_') or propid.count('CAL_'): return #clean up junk ones if propid in ['BIAS','COMMON','JUNK','TEST','UNKNOWN']: return #check to see if it is in the sdb if propid not in propids: message='\n%s for PROPID keyword for %s is invalid' % (propid, image) raise SaltError(message)
def skysubtract(hdu, method='normal', section=[], funct='polynomial', order=2): """For a given image, extract a measurement of the sky from the image and then subtract that measurement from the overall image and write the spectra to the output file """ for i in range(len(hdu)): if hdu[i].name == 'SCI': # set up the data, variance, and bad pixel frames # first step is to find the region to extract data_arr = hdu[i].data if saltkey.found('VAREXT', hdu[i]): var_ext = saltkey.get('VAREXT', hdu[i]) var_arr = hdu[var_ext].data else: var_arr = None var_ext = None try: bpm_ext = saltkey.get('BPMEXT', hdu[i]) bpm_arr = hdu[hdu[i].header['BPMEXT']].data except: bpm_ext = None bpm_arr = None # creat the xarr for the purposes of extracting the data xarr = np.arange(len(data_arr[0])) # TODO: The variance array does not fully work at the moment var_arr = None if method == 'normal': sdata = normalsky(xarr, data_arr, var_arr, section) elif method == 'fit': sdata = fitsky(xarr, data_arr, var_arr, section) # subtract the data hdu[i].data = data_arr - sdata # correct the variance frame if var_ext: hdu[var_ext].data = hdu[var_ext].data # +ap.lvar/nrows return hdu
def obslog(infiles, log=None): """For a set of input files, create a dictionary contain all the header information from the files. Will print things to a saltlog if log is not None returns Dictionary """ #create the header dictionary headerDict = {} for k in headerList: headerDict[k] = [] for k in scamheaderList: headerDict[k] = [] for k in rssheaderList: headerDict[k] = [] # interate over and open image files infiles.sort() for infile in infiles: #open the file struct = saltio.openfits(infile) # instrument scam = False rss = False instrume = saltkey.get('INSTRUME', struct[0]) if (instrume == 'RSS'): rss = True if (instrume == 'SALTICAM'): scam = True #add in the image name headerDict['FILENAME'].append(os.path.basename(infile)) # ingest primary keywords from files in the image list for k, f in zip(headerList[1:], formatList[1:]): default = finddefault(f) headerDict[k].append( getkey(struct[0], k, default=default, log=log, warn=True)) # ingest scam specific primary keywords from files in the image list for k, f in zip(scamheaderList[1:], scamformatList[1:]): default = finddefault(f) headerDict[k].append( getkey(struct[0], k, default=default, log=log, warn=scam)) # ingest rss specific primary keywords from files in the image list for k, f in zip(rssheaderList[1:], rssformatList[1:]): default = finddefault(f) headerDict[k].append( getkey(struct[0], k, default=default, log=log, warn=rss)) # close image files saltio.closefits(struct) if log: log.message('SALTOBSLOG -- read %s' % infile, with_header=False) return headerDict
def prepare(struct,createvar=False, badpixelstruct=None, namps=2): #set up the file name infile=saltkey.getimagename(struct[0]) #include information about which headers are science extensoisn #and check to make sure each array is a data array nextend=len(struct)-1 nsciext=nextend for i in range(1,nextend+1): try: struct[i].header['XTENSION'] == 'IMAGE' except: msg='Extension %i in %s is not an image data' raise SaltError(msg) saltkey.new('EXTNAME','SCI','Extension name',struct[i]) saltkey.new('EXTVER',i,'Extension number',struct[i]) #check the number of amplifiers #TODO: This is current hardwired at a value of 2 nccds = saltkey.get('NCCDS',struct[0]) if (nextend%(nccds*namps) != 0): message = 'ERROR -- SALTPREPARE: Number of file extensions and ' message += 'number of amplifiers are not consistent in ' + infile raise SaltError(message) #Add the inv. variance frame if requested--assumes no variance frame #and the science frames are in the first n frames if createvar: #create the inv. variance frames for i in range(1, nsciext+1): try: hdu=CreateVariance(struct[i], i, nextend+i) except Exception as e: msg='Cannot create variance frame in extension %i of %s because %s' % (nextend+i, infile, e) raise SaltError(msg) struct[i].header.update('VAREXT',nextend+i, comment='Extension for Variance Frame') struct.append(hdu) nextend+=nsciext #create the badpixelframes for i in range(1, nsciext+1): try: hdu=createbadpixel(struct, badpixelstruct, i, nextend+i) except Exception as e: msg='Could not create bad pixel extension in ext %i of %s because %s' % (nextend+i, infile, e) raise SaltError(msg) struct[i].header.update('BPMEXT',nextend+i, comment='Extension for Bad Pixel Mask') struct.append(hdu) nextend+=nsciext #update the number of extensions saltkey.new('NSCIEXT',nsciext,'Number of science extensions', struct[0]) saltkey.new('NEXTEND',nextend,'Number of data extensions', struct[0]) return struct
def clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=None, ampccd=2, xdict=[], subover=True, trim=True, subbias=False, bstruct=None, median=False, function='polynomial', order=3, rej_lo=3, rej_hi=3, niter=10, plotover=False, log=None, verbose=True): infile = struct #prepare the files struct = prepare(struct, createvar=createvar, badpixelstruct=badpixelstruct) #reset the names in the structures for i in range(1, len(struct)): struct[i].name = struct[i].header['EXTNAME'] #gain correct the files usedb = False if dblist: usedb = True struct = gain(struct, mult=mult, usedb=usedb, dblist=dblist, ampccd=ampccd, log=log, verbose=verbose) #xtalk correct the files usedb = False if xdict: obsdate = saltkey.get('DATE-OBS', struct[0]) try: obsdate = int('%s%s%s' % (obsdate[0:4], obsdate[5:7], obsdate[8:])) xkey = np.array(xdict.keys()) date = xkey[abs(xkey - obsdate).argmin()] xcoeff = xdict[date] except Exception, e: msg = 'WARNING--Can not find xtalk coefficient for %s because %s' % ( e, infile) if log: log.warning(msg) xcoeff = xdict[xdict.keys()[-1]]
def saltxtalk(images,outimages,outpref,xtalkfile=None, usedb=False, clobber=True, logfile='salt.log',verbose=True): #start logging with logging(logfile,debug) as log: # Check the input images infiles = saltio.argunpack ('Input',images) # create list of output files outfiles=saltio.listparse('Outfile', outimages, outpref,infiles,'') # are input and output lists the same length? saltio.comparelists(infiles,outfiles,'Input','output') # does crosstalk coefficient data exist if usedb: xtalkfile = xtalkfile.strip() xdict = saltio.readxtalkcoeff(xtalkfile) else: xdict=None for img, oimg in zip(infiles, outfiles): #open the fits file struct=saltio.openfits(img) #find the best xcoeff for the image if using the db if usedb: obsdate=saltkey.get('DATE-OBS', struct[0]) obsdate=int('%s%s%s' % (obsdate[0:4],obsdate[5:7], obsdate[8:])) xkey=np.array(xdict.keys()) date=xkey[abs(xkey-obsdate).argmin()] xcoeff=xdict[date] else: xcoeff=[] # identify instrument instrume,keyprep,keygain,keybias,keyxtalk,keyslot = saltkey.instrumid(struct) # has file been prepared already? if saltkey.found(keyxtalk, struct[0]): message='%s has already been xtalk corrected' % img raise SaltError(message) #apply the cross-talk correction struct = xtalk(struct, xcoeff, log=log, verbose=verbose) # housekeeping keywords fname, hist=history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'SXTALK', 'Images have been xtalk corrected', hist) # write FITS file saltio.writefits(struct,oimg, clobber=clobber) saltio.closefits(struct)
def readtimefix(hdu, dsteps=7, transtime=4e-3): """Update the hdu with the correct time for when the exposure started and add the READTIME keyword dsteps--the number of readouts to correct for transtime--the transfer time between each frame """ #check for if the data has already been processed if saltkey.found('READTIME', hdu): raise SaltIOError(' has already been processed') #determine the UTC time utctime = saltkey.get('UTC-OBS', hdu) timeobs = saltkey.get('TIME-OBS', hdu) dateobs = saltkey.get('DATE-OBS', hdu) exptime = float(saltkey.get('EXPTIME', hdu)) #add the readtime header saltkey.new("READTIME", utctime, 'Time of the readout of the frame', hdu) #correct the utctime--first switch to datetime to properly handle #dates around changes in hours y, m, d = dateobs.split('-') H, M, S = utctime.split(':') s = int(float(S)) ms = int(1e6 * (float(S) - s)) newtime = datetime.datetime(int(y), int(m), int(d), int(H), int(M), s, ms) #correct the datetime dtime = dsteps * (exptime + transtime) s = int(dtime) ms = int(1e6 * (dtime - s)) newtime = newtime - datetime.timedelta(0, s, ms) #update the headkeywords hdu.header["UTC-OBS"] = str(newtime.time()) saltkey.put("UTC-OBS", str(newtime.time()), hdu) saltkey.put("TIME-OBS", str(newtime.time()), hdu) saltkey.put("DATE-OBS", str(newtime.date()), hdu) return hdu
def readtimefix(hdu, dsteps=7, transtime=4e-3): """Update the hdu with the correct time for when the exposure started and add the READTIME keyword dsteps--the number of readouts to correct for transtime--the transfer time between each frame """ #check for if the data has already been processed if saltkey.found('READTIME', hdu): raise SaltIOError(' has already been processed') #determine the UTC time utctime=saltkey.get('UTC-OBS', hdu) timeobs=saltkey.get('TIME-OBS', hdu) dateobs=saltkey.get('DATE-OBS', hdu) exptime=float(saltkey.get('EXPTIME', hdu)) #add the readtime header saltkey.new("READTIME",utctime,'Time of the readout of the frame', hdu) #correct the utctime--first switch to datetime to properly handle #dates around changes in hours y,m,d=dateobs.split('-') H,M,S=utctime.split(':') s=int(float(S)) ms=int(1e6*(float(S)-s)) newtime=datetime.datetime(int(y),int(m),int(d),int(H),int(M),s,ms) #correct the datetime dtime=dsteps*(exptime+transtime) s=int(dtime) ms=int(1e6*(dtime-s)) newtime=newtime-datetime.timedelta(0, s, ms) #update the headkeywords hdu.header.update("UTC-OBS", str(newtime.time())) saltkey.put("UTC-OBS", str(newtime.time()), hdu) saltkey.put("TIME-OBS", str(newtime.time()), hdu) saltkey.put("DATE-OBS", str(newtime.date()), hdu) return hdu
def calc_resolution(hdu): """Calculate the resolution for a setup""" instrume=saltkey.get('INSTRUME', hdu[0]).strip() grating=saltkey.get('GRATING', hdu[0]).strip() grang=saltkey.get('GR-ANGLE', hdu[0]) grasteps=saltkey.get('GRTILT', hdu[0]) arang=saltkey.get('AR-ANGLE', hdu[0]) arsteps=saltkey.get('CAMANG', hdu[0]) rssfilter=saltkey.get('FILTER', hdu[0]) specmode=saltkey.get('OBSMODE', hdu[0]) masktype=saltkey.get('MASKTYP', hdu[0]).strip().upper() slitname=saltkey.get('MASKID', hdu[0]) xbin, ybin = saltkey.ccdbin( hdu[0], '') slit=st.getslitsize(slitname) #create RSS Model rss=RSSModel.RSSModel(grating_name=grating.strip(), gratang=grang, \ camang=arang,slit=slit, xbin=xbin, ybin=ybin, \ ) res=1e7*rss.calc_resolelement(rss.alpha(), -rss.beta()) return res
def getimagedetails(hdu): """Return all the pertinant image header details""" filename=hdu._HDUList__file.name imlist=[filename] print filename for k in headerList[1:]: try: value=saltkey.get(k, hdu[0]) except SaltIOError: value='' imlist.append(value) return imlist
def make_calring(hdu, method=None, thresh=5, niter=3, conv=0.05, minsize=10, axc=None, ayc=None): """Open each image and measure the position of the ring including its center and radius Return the information about the calibration ring """ # setup the data data = hdu[0].data # extract the time and convert to decimal hours utctime = saltkey.get("UTC-OBS", hdu[0]) utctime = salttime.time_obs2hr((utctime.split()[-1])) # determine the correct etalon and information to extract etstate = saltkey.get("ET-STATE", hdu[0]) if etstate.count("S2"): etz = saltkey.get("ET1Z", hdu[0]) elif etstate.count("S3"): etz = saltkey.get("ET2Z", hdu[0]) else: msg = "This etalon state is not currently supported" raise SaltError(msg) # extract the ring ring_list = findrings(data, thresh=thresh, niter=niter, minsize=minsize, axc=axc, ayc=ayc) # assumes only one ring in the data set ring = ring_list[0] # determine the center and radius of the ring if method is not None: ring = findcenter(data, ring, method, niter=niter, conv=conv) if axc: ring.xc = axc if ayc: ring.yc = ayc return ring.xc, ring.yc, ring.prad, ring.prad_err, etz, utctime
def obslog(infiles, log=None): """For a set of input files, create a dictionary contain all the header information from the files. Will print things to a saltlog if log is not None returns Dictionary """ #create the header dictionary headerDict={} for k in headerList: headerDict[k]=[] for k in scamheaderList: headerDict[k]=[] for k in rssheaderList: headerDict[k]=[] # interate over and open image files infiles.sort() for infile in infiles: #open the file struct = saltio.openfits(infile) # instrument scam = False rss = False instrume = saltkey.get('INSTRUME', struct[0]) if (instrume=='RSS'): rss = True if (instrume=='SALTICAM'): scam=True #add in the image name headerDict['FILENAME'].append(os.path.basename(infile)) # ingest primary keywords from files in the image list for k,f in zip(headerList[1:], formatList[1:]): default=finddefault(f) headerDict[k].append(getkey(struct[0], k, default=default, log=log, warn=True)) # ingest scam specific primary keywords from files in the image list for k,f in zip(scamheaderList[1:], scamformatList[1:]): default=finddefault(f) headerDict[k].append(getkey(struct[0], k, default=default, log=log, warn=scam)) # ingest rss specific primary keywords from files in the image list for k,f in zip(rssheaderList[1:], rssformatList[1:]): default=finddefault(f) headerDict[k].append(getkey(struct[0], k, default=default, log=log, warn=rss)) # close image files saltio.closefits(struct) if log: log.message('SALTOBSLOG -- read %s' % infile, with_header=False) return headerDict
def saltembed(images,outimages,outpref, clobber=True,logfile='salt.log',verbose=True): with logging(logfile,debug) as log: # Check the input images infiles = saltio.argunpack ('Input',images) # create list of output files outfiles=saltio.listparse('Outfile', outimages, outpref,infiles,'') #verify that the input and output lists are the same length saltio.comparelists(infiles,outfiles,'Input','output') # open each raw image file for img, oimg, in zip(infiles, outfiles): #open the fits file struct=saltio.openfits(img) #get the number of CCDs nccd=saltkey.get('NCCDS', struct[0]) #set the number of amps per CCD--*TODO* Read from header namps=2 #get the number of windows--try to read from header try: nwindows=saltkey.get('NWINDOWS', struct[0]) except: nwindows=len(struct)/(nccd*namps) outstruct=embedimage(struct, nccd, namps, nwindows) saltio.writefits(outstruct, oimg, clobber=clobber) message = 'SALTEMBED -- %s => %s' % (img, oimg) log.message(message, with_header=False)
def prepare(struct,createvar=False, badpixelstruct=None, namps=2): #set up the file name infile=saltkey.getimagename(struct[0]) #include information about which headers are science extensoisn #and check to make sure each array is a data array nextend=len(struct)-1 nsciext=nextend for i in range(1,nextend+1): try: struct[i].header['XTENSION'] == 'IMAGE' except: msg='Extension %i in %s is not an image data' raise SaltError(msg) saltkey.new('EXTNAME','SCI','Extension name',struct[i]) saltkey.new('EXTVER',i,'Extension number',struct[i]) #check the number of amplifiers #TODO: This is current hardwired at a value of 2 nccds = saltkey.get('NCCDS',struct[0]) if (nextend%(nccds*namps) != 0): message = 'ERROR -- SALTPREPARE: Number of file extensions and ' message += 'number of amplifiers are not consistent in ' + infile raise SaltError(message) #Add the inv. variance frame if requested--assumes no variance frame #and the science frames are in the first n frames if createvar: #create the inv. variance frames for i in range(1, nsciext+1): try: hdu=CreateVariance(struct[i], i, nextend+i) except Exception, e: msg='Cannot create variance frame in extension %i of %s because %s' % (nextend+i, infile, e) raise SaltError(msg) struct[i].header.update('VAREXT',nextend+i, comment='Extension for Variance Frame') struct.append(hdu) nextend+=nsciext #create the badpixelframes for i in range(1, nsciext+1): try: hdu=createbadpixel(struct, badpixelstruct, i, nextend+i) except Exception, e: msg='Could not create bad pixel extension in ext %i of %s because %s' % (nextend+i, infile, e) raise SaltError(msg) struct[i].header.update('BPMEXT',nextend+i, comment='Extension for Bad Pixel Mask') struct.append(hdu)
def updateheaders(struct, ext, tdiff, real_expt, utc, infile): # exit if tdiff wasn't updated if tdiff == real_expt: msg='No adequate correction found for frame %i in file %s' % (ext, infile) raise SaltError(msg) return struct # calculate the new utc value try: ntime=salttime.sex2dec(utc) ntime=ntime-tdiff/3600.0 newutc=salttime.dec2sex(ntime) except Exception as e: msg='Could not update UTC in %i header of image %s because %s' % (ext, infile, e) raise SaltError(msg) return struct # update the headers if utc==saltsafekey.get('UTC-OBS', struct): expt_string='%5.4f' % real_expt td_string='%5.4f' % tdiff if not saltsafekey.found('DUTC', struct): try: saltsafekey.put('UTC-OBS', newutc, struct, infile) saltsafekey.put('TIME-OBS', newutc, struct, infile) saltsafekey.new('DWETIME', expt_string, 'Dwell Time', struct, infile) saltsafekey.new('DUTC', td_string, 'Change in UTC time', struct, infile) except Exception as e: msg='Could not update %i header of image %s because %s' % (ext, infile, e) raise SaltIOError(msg) else: try: saltsafekey.put('UTC-OBS', newutc, struct, infile) saltsafekey.put('TIME-OBS', newutc, struct, infile) saltsafekey.put('DWETIME', real_expt, struct, infile) saltsafekey.put('DUTC', tdiff, struct, infile) except Exception as e: msg='Could not update %i header of image %s because %s' % (ext, infile, e) raise SaltError(msg) else: raise SaltIOError('Frame missing from list of times') return struct
def read_slits_from_fits(simg): """Read the slit definitions from a FITS fiel where the slit definitions have been stored in a table in the FITS file under an extension with the name """ # first check if the file exists saltio.fileexists(simg) # open the slit image struct = saltio.openfits(simg) # get the extension of the slit table slitext = saltkey.get('SLITEXT', struct[0]) # extract the order of the fit and the positions of each of the slits order, slit_positions = mt.read_slits_HDUtable(struct[slitext]) return order, slit_positions
def getkey(struct, keyword, default, warn=True, log=None): """Return the keyword value. Throw a warning if it doesn't work """ try: value = saltkey.get(keyword, struct) if isinstance(default, str): value = value.strip() except SaltIOError: value = default infile = struct._file.name message = 'WARNING: cannot find keyword %s in %s' % (keyword, infile) if warn and log: log.message(message, with_header=False) if (str(value).strip() == ''): value = default #if (type(value) != type(default)): # infile=struct._file.name # message='WARNING: Type mismatch for %s for %s in %s[0]' % (str(value), keyword, infile) # if warn and log: log.message(message, with_header=False) # value=default return value
def getkey(struct,keyword,default,warn=True, log=None): """Return the keyword value. Throw a warning if it doesn't work """ try: value = saltkey.get(keyword, struct) if isinstance(default, str): value=value.strip() except SaltIOError: value = default infile=struct._file.name message = 'WARNING: cannot find keyword %s in %s' %(keyword, infile) if warn and log: log.message(message, with_header=False) if (str(value).strip() == ''): value = default #if (type(value) != type(default)): # infile=struct._file.name # message='WARNING: Type mismatch for %s for %s in %s[0]' % (str(value), keyword, infile) # if warn and log: log.message(message, with_header=False) # value=default return value
def illum_cor(struct, mbox): """Apply an illumination correction to a set of images return struct """ # Determine the number of extensions nextend = len(struct) #flat field the data for i in range(nextend): if struct[i].name == 'SCI' or len(struct) == 1: #create the median image mdata = median_filter(struct[i].data, size=(mbox, mbox)) #create the data struct[i].data = struct[i].data / mdata #Account for variance frames if saltkey.found('VAREXT', struct[i]): varext = saltkey.get('VAREXT', struct[i]) struct[varext].data = struct[varext].data / mdata return struct
def surface_fit(struct, order=3, mask=True, minlevel=0): """Fit a surface to an image return struct """ # Determine the number of extensions nextend = len(struct) #flat field the data for i in range(nextend): if struct[i].name == 'SCI' or len(struct) == 1: #create the median image if mask: bpmext = saltkey.get('BPMEXT', struct[i]) mask_arr = (struct[bpmext].data == 0) * (struct[i].data > minlevel) else: mask_arr = (struct[i].data < minlevel) #create the data coef = fit_surface(struct[i].data, mask=mask_arr, xorder=order, yorder=order, xyorder=0) y, x = np.indices(struct[i].data.shape) sf = surface(coef, xorder=order, yorder=order, xyorder=0) print coef struct[i].data = sf(x, y) #Account for variance frames if mask: struct[bpmext].data = struct[bpmext].data * 0 return struct
def slotback(images,outfits,extension,imgtype='image',subbacktype='median', sigback=3,mbin=7,sorder=3,niter=5,ampperccd=2,ignorexp=6, clobber=False,logfile='salt.log',verbose=True): with logging(logfile,debug) as log: # set up the variables order=sorder plotfreq=0.01 ftime=plotfreq # is the input file specified? infiles = saltio.argunpack ('Input',images) # is the output file specified? saltio.filedefined('Output',outfits) #open the first file and check its charactistics struct=saltio.openfits(infiles[0]) # how many extensions? nextend=saltkey.get('NEXTEND',struct[0]) if nextend < extension: msg='Insufficient number of extensions in %s' % (infile) raise SaltIOError(msg) # how many amplifiers? amplifiers=saltkey.get('NCCDS',struct[0]) amplifiers = int(ampperccd*float(amplifiers)) if ampperccd>0: nframes = nextend/amplifiers nstep=amplifiers else: nframes = nextend nstep=1 ntotal=nframes*len(infiles) # image size naxis1=saltkey.get('NAXIS1',struct[extension]) naxis2=saltkey.get('NAXIS2',struct[extension]) # CCD binning ccdsum=saltkey.get('CCDSUM',struct[0]) binx=int(ccdsum.split(' ')[0]) biny=int(ccdsum.split(' ')[1]) # If a total file is to written out, create it and update it hdu = 1 # delete the file if clobber is on and the file exists if os.path.isfile(outfits): if clobber: saltio.delete(outfits) else: raise SaltIOError('Output fits file '+writenewfits+'already exists. Use Clobber=yes to overwrite file') # create the output file try: hdu = pyfits.PrimaryHDU() hdu.header=struct[0].header hdu.header['NCCDS']=1 hdu.header['NSCIEXT']=ntotal-ignorexp hdu.header['NEXTEND']=ntotal-ignorexp hduList = pyfits.HDUList(hdu) hduList.verify() hduList.writeto(outfits) except: raise SaltIOError('Could not create new fits file named '+writenewfits) # read it back in for updating hduList = saltio.openfits(outfits,mode='update') # set up the completeness tracker if verbose: j=0 x2=float(j)/float(ntotal) ctext='Percentage Complete: %3.2f' % x2 sys.stdout.write(ctext) sys.stdout.flush() for infile in infiles: struct=saltio.openfits(infile) # Skip through the frames and process each frame individually for i in range(nframes): if not (infile==infiles[0] and i < ignorexp): hdu=extension+i*nstep try: header=struct[hdu].header array=struct[hdu].data array=array*1.0 except Exception as e: msg='Unable to open extension %i in image %s because %s' % (hdu, infile, e) raise SaltIOError(msg) # start the analysis of each frame # gain and readout noise try: gain=float(header['GAIN']) except: gain=1 log.warning('Gain not specified in image header') try: rdnoise=float(header['RDNOISE']) except: rdnoise=0 log.warning('RDNOISE not specified in image header') # background subtraction if not subbacktype=='none': try: narray=subbackground(array, sigback, mbin, order, niter, subbacktype) except: log.warning('Image '+infile+' extention '+str(i)+' is blank, skipping') continue # create output array try: if imgtype=='background': oarray=narray-array else: oarray=narray except: oarray=array # print progress if verbose: x2=float(j)/float(ntotal) if x2 > ftime: ctext='\b\b\b\b\b %3.2f' % x2 sys.stdout.write(ctext) sys.stdout.flush() ftime += plotfreq # update the header values with the image name and extension number try: hdue = pyfits.ImageHDU(oarray) hdue.header=header hdue.header.update('ONAME',infile,'Original image name') hdue.header.update('OEXT',hdu,'Original extension number') except Exception as e: msg='SALTPHOT--WARNING: Could not update image in newfits file for %s ext %i because %s' \ % (infile, hdu, e) raise SaltIOError(msg) hduList.append(hdue) j +=1 # close FITS file saltio.closefits(struct) # close the output fits file: try: # write out the file hduList.flush() hduList.close() except Exception as e: raise SaltIOError('Failed to write %s because %s' % (outfits, e))
def saltxtalk(images, outimages, outpref, xtalkfile=None, usedb=False, clobber=True, logfile='salt.log', verbose=True): #start logging with logging(logfile, debug) as log: # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outfiles = saltio.listparse('Outfile', outimages, outpref, infiles, '') # are input and output lists the same length? saltio.comparelists(infiles, outfiles, 'Input', 'output') # does crosstalk coefficient data exist if usedb: xtalkfile = xtalkfile.strip() xdict = saltio.readxtalkcoeff(xtalkfile) else: xdict = None for img, oimg in zip(infiles, outfiles): #open the fits file struct = saltio.openfits(img) #find the best xcoeff for the image if using the db if usedb: obsdate = saltkey.get('DATE-OBS', struct[0]) obsdate = int('%s%s%s' % (obsdate[0:4], obsdate[5:7], obsdate[8:])) xkey = np.array(xdict.keys()) date = xkey[abs(xkey - obsdate).argmin()] xcoeff = xdict[date] else: xcoeff = [] # identify instrument instrume, keyprep, keygain, keybias, keyxtalk, keyslot = saltkey.instrumid( struct) # has file been prepared already? if saltkey.found(keyxtalk, struct[0]): message = '%s has already been xtalk corrected' % img raise SaltError(message) #apply the cross-talk correction struct = xtalk(struct, xcoeff, log=log, verbose=verbose) # housekeeping keywords fname, hist = history(level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'SXTALK', 'Images have been xtalk corrected', hist) # write FITS file saltio.writefits(struct, oimg, clobber=clobber) saltio.closefits(struct)
def hducombine(hdu_list, outhdu, ext, method='average', datasec=None, reject=None, mask=False, weight=False, scale=None, statsec=None, blank=0, lthresh=3, hthresh=3): """Combine a set of images in imlist """ #set up i as the extionsion variable as shortcut i=ext nimages=len(hdu_list) #set all the data arrays data_list=[] gain=np.zeros(nimages) rdnoise=np.zeros(nimages) varext=None bpmext=None #set the datasec in case it is none as the full image if datasec is None: sh=outhdu[ext].data.shape y1,x1=(0,0) y2,x2=outhdu[i].data.shape else: y1,y2,x1,x2=datasec dshape=outhdu[i].data[y1:y2,x1:x2].shape dtype=outhdu[i].data[y1:y2,x1:x2].dtype wei_arr=outhdu[i].data[y1:y2,x1:x2]*0.0 #check for variance frame if saltkey.found('VAREXT', outhdu[i]) and weight: varext=saltkey.get('VAREXT', outhdu[i]) var_list=[] #check for bad pixel mask if saltkey.found('BPMEXT', outhdu[i]) and mask: bpmext=saltkey.get('BPMEXT',outhdu[i]) bpm_list=[] #create the lists of arrays and scale the arrays if requests mean_scale=0 data_arr=np.zeros((nimages, dshape[0], dshape[1]), dtype=dtype) for j in range(nimages): data_arr[j,:,:]=hdu_list[j][i].data[y1:y2,x1:x2] #calculate the scale if scale: scale_val=CalculateScale(data_arr, scale, statsec) mean_scale += scale_val else: scale_val=1 mean_scale+=1 if varext: var_list.append(hdu_list[j][varext].data[y1:y2,x1:x2]/scale_val) if bpmext: bpm_list.append(hdu_list[j][bpmext].data[y1:y2,x1:x2]) #get the gain and rdnoise if reject=='ccdclip': if saltkey.found('GAINMULT', hdu_list[j][i]): gain[j]=1 else: gain[j]=saltkey.get('GAIN', hdu_list[j][i]) rdnoise[j]=saltkey.get('RDNOISE', hdu_list[j][i]) #convert the lists to arrays if varext: var_arr=np.array(var_list) ivar_arr=1.0/var_arr else: var_arr=None ivar_arr=None if bpmext: bpm_arr=np.array(bpm_list) else: bpm_arr=None #reject outliers if set bpm_arr=RejectArray(data_arr, reject=reject, var=var_arr, bpm=bpm_arr, \ lthresh=lthresh, hthresh=hthresh, gain=gain, rdnoise=rdnoise) #calculate the average values outdata, outwei=CombineArray(data_arr, method=method, ivar=ivar_arr, bpm=bpm_arr) outhdu[i].data[y1:y2,x1:x2]=outdata if scale is not None: mean_scale = mean_scale/nimages outhdu[i].data[y1:y2,x1:x2] *= mean_scale #create the combine variance frame if varext: outhdu[varext].data[y1:y2,x1:x2], tmp_arr=CombineArray(var_arr, method=method, ivar=ivar_arr, bpm=bpm_arr) del tmp_arr if scale is not None: outhdu[varext].data *= mean_scale #check to see if any of the pixels have no values and replace with blank #if wei_arr.any()==0: # wmask=(wei_arr==0) # outhdu[i].data[wmask]=blank #create the combine BPM frames if bpmext: outhdu[bpmext].data=1.0*(wei_arr==0) return outhdu
def specslit(image, outimage, outpref, exttype='auto', slitfile='', outputslitfile='', regprefix='', sections=3, width=25, sigma=2.2, thres=6, order=3, padding=5, yoffset=0, inter=False, clobber=True, logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # check all the input and make sure that all the input needed is provided # by the user # read the image or image list and check if each in the list exist infiles = saltio.argunpack('Input', image) # unpack the outfiles outfiles = saltio.listparse( 'Outimages', outimage, outpref, infiles, '') # from the extraction type, check whether the input file is specified. # if the slitfile parameter is specified then use the slit files for # the extraction. if the extraction type is auto then use image for the # detection and the slit extraction if exttype == 'rsmt' or exttype == 'fits' or exttype == 'ascii' or exttype == 'ds9': slitfiles = saltio.argunpack('Slitfile', slitfile) if len(slitfiles) == 1: slitfiles = slitfiles * len(infiles) saltio.comparelists(infiles, slitfiles, 'image', 'slitfile') elif exttype == 'auto': slitfiles = infiles log.message( 'Extraction type is AUTO. Slit detection will be done from image') # read in if an optional ascii file is requested if len(outputslitfile) > 0: outslitfiles = saltio.argunpack('Outslitfiles', outputslitfile) saltio.comparelists( infiles, outslitfiles, 'image', 'outputslitfile') else: outslitfiles = [''] * len(infiles) # check if the width and sigma parameters were specified. # default is 25 and 2.2 if width < 10.: msg = 'The width parameter needs be a value larger than 10' raise SALTSpecError(msg) if sigma < 0.0: msg = 'Sigma must be greater than zero' raise SaltSpecError(msg) # check the treshold parameter. this needs to be specified by the user if thres <= 0.0: msg = 'Threshold must be greater than zero' raise SaltSpecError(msg) # check to make sure that the sections are greater than the order if sections <= order: msg = 'Number of sections must be greater than the order for the spline fit' raise SaltSpecError(msg) # run through each of the images and extract the slits for img, oimg, sfile, oslit in zip( infiles, outfiles, slitfiles, outslitfiles): log.message('Proccessing image %s' % img) # open the image struct = saltio.openfits(img) ylen, xlen = struct[1].data.shape xbin, ybin = saltkey.ccdbin(struct[0], img) # setup the VARIANCE and BPM frames if saltkey.found('VAREXT', struct[1]): varext = saltkey.get('VAREXT', struct[1]) varlist = [] else: varext = None # setup the BPM frames if saltkey.found('BPMEXT', struct[1]): bpmext = saltkey.get('BPMEXT', struct[1]) bpmlist = [] else: bpmext = None # open the slit definition file or identify the slits in the image slitmask = None ycheck = False if exttype == 'rsmt': log.message('Using slits from %s' % sfile) if yoffset is None: yoffset = 0 ycheck = True slitmask = mt.read_slitmask_from_xml(sfile) xpos = -0.3066 ypos = 0.0117 cx = int(xlen / 2.0) cy = int(ylen / 2.0) + ypos / 0.015 / ybin + yoffset order, slit_positions = mt.convert_slits_from_mask( slitmask, order=1, xbin=xbin, ybin=ybin, pix_scale=0.1267, cx=cx, cy=cy) sections = 1 elif exttype == 'fits': log.message('Using slits from %s' % sfile) order, slit_positions = read_slits_from_fits(sfile) elif exttype == 'ascii': log.message('Using slits from %s' % sfile) order, slit_positions = mt.read_slits_from_ascii(sfile) elif exttype == 'ds9': log.message('Using slits from %s' % sfile) order, slit_positions, slitmask = mt.read_slits_from_ds9( sfile, order=order) slitmask = None sections = 1 elif exttype == 'auto': log.message('Identifying slits in %s' % img) # identify the slits in the image order, slit_positions = identify_slits( struct[1].data, order, sections, width, sigma, thres) # write out the slit identifications if ofile has been supplied if oslit: log.message('Writing slit positions to %s' % oslit) mt.write_outputslitfile(slit_positions, oslit, order) if ycheck: slit_positions, dy = check_ypos(slit_positions, struct[1].data) log.message('Using an offset of {}'.format(dy)) # extract the slits spline_x = mt.divide_image(struct[1].data, sections) spline_x = 0.5 * (np.array(spline_x[:-1]) + np.array(spline_x[1:])) extracted_spectra, spline_positions = mt.extract_slits(slit_positions, spline_x, struct[1].data, order=order, padding=padding) if varext: extracted_var, var_positions = mt.extract_slits(slit_positions, spline_x, struct[varext].data, order=order, padding=padding) if bpmext: extracted_bpm, bpm_positions = mt.extract_slits(slit_positions, spline_x, struct[bpmext].data, order=order, padding=padding) # write out the data to the new array # create the new file hdulist = fits.HDUList([struct[0]]) # log the extracted spectra if needed log.message('', with_stdout=verbose) # setup output ds9 file if regprefix: regout = open( regprefix + os.path.basename(img).strip('.fits') + '.reg', 'w') regout.write('# Region file format: DS9 version 4.1\n') regout.write('# Filename: %s\n' % img) regout.write( 'global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\nphysical\n') # add each imglist = [] nslits = len(spline_positions) for i in range(nslits): y1 = spline_positions[i][0].min() y2 = spline_positions[i][1].max() msg = 'Extracted Spectra %i between %i to %i' % (i + 1, y1, y2) # log.message(msg, with_header=False, with_stdout=verbose) sdu = fits.ImageHDU( extracted_spectra[i], header=struct[1].header) if varext: vdu = fits.ImageHDU( extracted_var[i], header=struct[varext].header) sdu.header['VAREXT'] = i + nslits + 1 varlist.append(vdu) if bpmext: bdu = fits.ImageHDU( extracted_bpm[i], header=struct[bpmext].header) sdu.header['BPMEXT']= i + 2 * nslits + 1 bpmlist.append(bdu) imglist.append(sdu) # add in some additional keywords imglist[i].header['MINY'] = (y1, 'Lower Y value in original image') imglist[i].header['MAXY'] = (y2, 'Upper Y value in original image') if regprefix: xsize = struct[1].data.shape[1] xsize = int(0.5 * xsize) rtext = '' if slitmask: # rtext='%s, %8.7f, %8.7f, %3.2f' % (slitmask.slitlets.data[i]['name'], slitmask.slitlets.data[i]['targ_ra'], slitmask.slitlets.data[i]['targ_dec'], slitmask.slitlets.data[i]['slit_width']) pass regout.write('box(%i,%i, %i, %i) #text={%s}\n' % ( xsize, 0.5 * (y1 + y2), 2 * xsize, y2 - y1, rtext)) # add slit information if slitmask: imglist[i].header['SLITNAME'] = (slitmask.slitlets.data[i]['name'], 'Slit Name') imglist[i].header['SLIT_RA'] = (slitmask.slitlets.data[i]['targ_ra'], 'Slit RA') imglist[i].header['SLIT_DEC'] = (slitmask.slitlets.data[i]['targ_dec'], 'Slit DEC') imglist[i].header['SLIT'] = (slitmask.slitlets.data[i]['slit_width'], 'Slit Width') # add to the hdulist hdulist += imglist if varext: hdulist += varlist if bpmext: hdulist += bpmlist # write the slit positions to the header # create the binary table HDU that contains the split positions tbhdu = mt.slits_HDUtable(slit_positions, order) bintable_hdr = tbhdu.header # add the extname parameter to the extension tbhdu.header['EXTNAME'] = 'BINTABLE' # add the extname parameter to the extension hdulist[0].header['SLITEXT'] = len(hdulist) hdulist.append(tbhdu) # add addition header information about the mask if slitmask: hdulist[0].header['MASKNAME'] = (slitmask.mask_name, 'SlitMask Name') hdulist[0].header['MASK_RA'] = (slitmask.center_ra, 'SlitMask RA') hdulist[0].header['MASK_DEC'] = ( slitmask.center_dec, 'SlitMask DEC') hdulist[0].header['MASK_PA'] = ( slitmask.position_angle, 'SlitMask Position Angle') # write out the image saltio.writefits(hdulist, oimg, clobber)
def gain(struct, mult=True, usedb=False, dblist=None, ampccd=2, log=None, verbose=True): """gain processes a image hduList and gain corrects each amplifier. It can either use gain settings in the header or those supplied in a config file which would be suppleid in the dblist (see helpfile for structure of the config file). If variance frames exist, it will update those for changes in the header value as well. In the end, it will update the gain with a value of one signfing the data has been transformed into e- from ADU The program will look for the non-linear gain settings which are given by: e = GAIN*(1 + GAIN1*E-6*ADU)*ADU mult--if true, multiple the gains usedb--use the values in the dblist, if false use the header values dblist--values for the gain and readnoise from the ampccd--number of amplifiers per ccd dblist should have the following lists: speed, rate, gain, noise, bias, amp """ #get the infile name infile = saltkey.getimagename(struct[0]) #how many science extensions nsciext = saltkey.get('NSCIEXT', struct[0]) #how many data extensions nextend = saltkey.get('NSCIEXT', struct[0]) # how many amplifiers? amplifiers = ampccd * saltkey.get('NCCDS', struct[0]) #read the gain and rospeed for the image gainset = saltkey.get('GAINSET', struct[0]) rospeed = saltkey.get('ROSPEED', struct[0]) #loop through each amplifier and gain correct it if log: message = '%28s %6s %5s %3s %5s %5s' \ % ('HDU','GAIN','SPEED','AMP','GAIN','NOISE') log.message('\n ---------------------------------------------------', \ with_header=False, with_stdout=verbose) log.message(message, with_header=False, with_stdout=verbose) log.message(' ---------------------------------------------------', \ with_header=False, with_stdout=verbose) for i in range(nsciext): hdu = i + 1 amp = i % amplifiers + 1 #get the gain and rdnoise values for the array if usedb: gain, rdnoise = get_values(dblist, gainset, rospeed, amp) gain1 = 0 else: gain = saltkey.get('GAIN', struct[hdu]) rdnoise = saltkey.get('RDNOISE', struct[hdu]) try: gain1 = saltkey.get('GAIN1', struct[hdu]) except: gain1 = 0 if mult: #correct the gain gainmult = 1 try: data = struct[hdu].data struct[hdu].data = gain * data + gain1 * data**2 except Exception, e: msg = 'Cannot gain correct %s[%i] because %s' % (infile, hdu, e) raise SaltError(msg) #correct the variance frame if saltkey.found('VAREXT', struct[hdu]): vhdu = saltkey.get('VAREXT', struct[hdu]) try: vdata = struct[vhdu].data struct[vhdu].data = vdata * gain * ( 1 + 2 * gain1 * 1e-6 * data) except Exception, e: msg = 'Cannot update the variance frame in %s[%i] because %s' % ( infile, vhdu, e) raise SaltError(msg)
def hducombine(hdu_list, outhdu, ext, method='average', datasec=None, reject=None, mask=False, weight=False, scale=None, statsec=None, blank=0, lthresh=3, hthresh=3): """Combine a set of images in imlist """ #set up i as the extionsion variable as shortcut i = ext nimages = len(hdu_list) #set all the data arrays data_list = [] gain = np.zeros(nimages) rdnoise = np.zeros(nimages) varext = None bpmext = None #set the datasec in case it is none as the full image if datasec is None: sh = outhdu[ext].data.shape y1, x1 = (0, 0) y2, x2 = outhdu[i].data.shape else: y1, y2, x1, x2 = datasec dshape = outhdu[i].data[y1:y2, x1:x2].shape dtype = outhdu[i].data[y1:y2, x1:x2].dtype wei_arr = outhdu[i].data[y1:y2, x1:x2] * 0.0 #check for variance frame if saltkey.found('VAREXT', outhdu[i]) and weight: varext = saltkey.get('VAREXT', outhdu[i]) var_list = [] #check for bad pixel mask if saltkey.found('BPMEXT', outhdu[i]) and mask: bpmext = saltkey.get('BPMEXT', outhdu[i]) bpm_list = [] #create the lists of arrays and scale the arrays if requests mean_scale = 0 data_arr = np.zeros((nimages, dshape[0], dshape[1]), dtype=dtype) for j in range(nimages): data_arr[j, :, :] = hdu_list[j][i].data[y1:y2, x1:x2] #calculate the scale if scale: scale_val = CalculateScale(data_arr, scale, statsec) mean_scale += scale_val else: scale_val = 1 mean_scale += 1 if varext: var_list.append(hdu_list[j][varext].data[y1:y2, x1:x2] / scale_val) if bpmext: bpm_list.append(hdu_list[j][bpmext].data[y1:y2, x1:x2]) #get the gain and rdnoise if reject == 'ccdclip': if saltkey.found('GAINMULT', hdu_list[j][i]): gain[j] = 1 else: gain[j] = saltkey.get('GAIN', hdu_list[j][i]) rdnoise[j] = saltkey.get('RDNOISE', hdu_list[j][i]) #convert the lists to arrays if varext: var_arr = np.array(var_list) ivar_arr = 1.0 / var_arr else: var_arr = None ivar_arr = None if bpmext: bpm_arr = np.array(bpm_list) else: bpm_arr = None #reject outliers if set bpm_arr=RejectArray(data_arr, reject=reject, var=var_arr, bpm=bpm_arr, \ lthresh=lthresh, hthresh=hthresh, gain=gain, rdnoise=rdnoise) #calculate the average values outdata, outwei = CombineArray(data_arr, method=method, ivar=ivar_arr, bpm=bpm_arr) outhdu[i].data[y1:y2, x1:x2] = outdata if scale is not None: mean_scale = mean_scale / nimages outhdu[i].data[y1:y2, x1:x2] *= mean_scale #create the combine variance frame if varext: outhdu[varext].data[y1:y2, x1:x2], tmp_arr = CombineArray(var_arr, method=method, ivar=ivar_arr, bpm=bpm_arr) del tmp_arr if scale is not None: outhdu[varext].data *= mean_scale #check to see if any of the pixels have no values and replace with blank #if wei_arr.any()==0: # wmask=(wei_arr==0) # outhdu[i].data[wmask]=blank #create the combine BPM frames if bpmext: outhdu[bpmext].data = 1.0 * (wei_arr == 0) return outhdu
def xtalk(struct, xcoeff, namps=2, log=None, verbose=False): """xtalk cross-talk corrects the amplifies. It takes """ infile = saltkey.getimagename(struct[0]) # how many extensions? nsciext = saltkey.get('NSCIEXT', struct[0]) nextend = saltkey.get('NEXTEND', struct[0]) nccd = saltkey.get('NCCDS', struct[0]) # how many amplifiers?--this is hard wired amplifiers = namps * nccd #setup the log if log: message = '%28s %23s' % ('HDU', 'Correction') message += '\n ----------------------------------------------' log.message(message, with_header=False, with_stdout=verbose) #Loop over the image extensions and subtract one #set from the other--still hardwired at 2 for i in range(1, nsciext, 2): if struct[i].name == 'SCI' and struct[i + 1].name == 'SCI': #set up the first amplifier dat1 = struct[i].data.copy() ext1 = saltkey.get('EXTVER', struct[i]) if xcoeff: j = (ext1 - 1) % amplifiers xc1 = float(xcoeff[j]) else: xc1 = 1.0 / saltkey.get('XTALK', struct[i]) #set up the second amplifier dat2 = struct[i + 1].data.copy() ext2 = saltkey.get('EXTVER', struct[i + 1]) if xcoeff: j = (ext2 - 1) % amplifiers xc2 = float(xcoeff[j]) else: xc2 = 1.0 / saltkey.get('XTALK', struct[i + 1]) #subtract one from the other struct[i].data = struct[i].data - xc2 * dat2[:, ::-1] struct[i + 1].data = struct[i + 1].data - xc1 * dat1[:, ::-1] #correct the variance frame if saltkey.found('VAREXT', struct[i]): vhdu1 = saltkey.get('VAREXT', struct[i]) vhdu2 = saltkey.get('VAREXT', struct[i + 1]) try: struct[vhdu1].data += xc2 * struct[vhdu2].data struct[vhdu2].data += xc1 * struct[vhdu1].data except Exception, e: msg = 'Cannot update the variance frame in %s[%i] because %s' % ( infile, vhdu1, e) raise SaltError(msg) #print the message if log: message = '%25s[%1d] Amp%1d - Amp%1d * %8.6f' % \ (infile, i, ext1, ext2, xc2) log.message(message, with_header=False, with_stdout=verbose) message = '%25s[%1d] Amp%1d - Amp%1d * %8.6f' % \ (infile, i+1, ext2, ext1, xc1) log.message(message, with_header=False, with_stdout=verbose)
def make_mosaic(struct, gap, xshift, yshift, rotation, interp_type='linear', boundary='constant', constant=0, geotran=True, fill=False, cleanup=True, log=None, verbose=False): """Given a SALT image struct, combine each of the individual amplifiers and apply the geometric CCD transformations to the image """ # get the name of the file infile = saltkey.getimagename(struct[0], base=True) outpath = './' # identify instrument instrume, keyprep, keygain, keybias, keyxtalk, keyslot = \ saltkey.instrumid(struct) # how many amplifiers? nsciext = saltkey.get('NSCIEXT', struct[0]) nextend = saltkey.get('NEXTEND', struct[0]) nccds = saltkey.get('NCCDS', struct[0]) amplifiers = nccds * 2 if nextend > nsciext: varframe = True else: varframe = False # CCD geometry coefficients if (instrume == 'RSS' or instrume == 'PFIS'): xsh = [0., xshift[0], 0., xshift[1]] ysh = [0., yshift[0], 0., yshift[1]] rot = [0., rotation[0], 0., rotation[1]] elif instrume == 'SALTICAM': xsh = [0., xshift[0], 0.] ysh = [0., yshift[0], 0.] rot = [0., rotation[0], 0] # how many extensions? nextend = saltkey.get('NEXTEND', struct[0]) # CCD on-chip binning xbin, ybin = saltkey.ccdbin(struct[0]) # create temporary primary extension outstruct = [] outstruct.append(struct[0]) # define temporary FITS file store tiled CCDs tilefile = saltio.tmpfile(outpath) tilefile += 'tile.fits' if varframe: tilehdu = [None] * (3 * int(nsciext / 2) + 1) else: tilehdu = [None] * int(nsciext / 2 + 1) tilehdu[0] = fits.PrimaryHDU() #tilehdu[0].header = struct[0].header if log: log.message('', with_stdout=verbose) # iterate over amplifiers, stich them to produce file of CCD images for i in range(int(nsciext / 2)): hdu = i * 2 + 1 # amplifier = hdu%amplifiers # if (amplifier == 0): amplifier = amplifiers # read DATASEC keywords datasec1 = saltkey.get('DATASEC', struct[hdu]) datasec2 = saltkey.get('DATASEC', struct[hdu + 1]) xdsec1, ydsec1 = saltstring.secsplit(datasec1) xdsec2, ydsec2 = saltstring.secsplit(datasec2) # read images imdata1 = saltio.readimage(struct, hdu) imdata2 = saltio.readimage(struct, hdu + 1) # tile 2n amplifiers to yield n CCD images outdata = numpy.zeros( (int(ydsec1[1] + abs(ysh[i + 1] / ybin)), int(xdsec1[1] + xdsec2[1] + abs(xsh[i + 1] / xbin))), numpy.float32) # set up the variance frame if varframe: vardata = outdata.copy() vdata1 = saltio.readimage(struct, struct[hdu].header['VAREXT']) vdata2 = saltio.readimage(struct, struct[hdu + 1].header['VAREXT']) bpmdata = outdata.copy() bdata1 = saltio.readimage(struct, struct[hdu].header['BPMEXT']) bdata2 = saltio.readimage(struct, struct[hdu + 1].header['BPMEXT']) x1 = xdsec1[0] - 1 if x1 != 0: msg = 'The data in %s have not been trimmed prior to mosaicking.' \ % infile log.error(msg) if xsh[i + 1] < 0: x1 += int(abs(xsh[i + 1] / xbin)) x2 = x1 + xdsec1[1] y1 = ydsec1[0] - 1 if ysh[i + 1] < 0: y1 += int(abs(ysh[i + 1] / ybin)) y2 = y1 + ydsec1[1] outdata[y1:y2, x1:x2] =\ imdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] if varframe: vardata[y1:y2, x1:x2] =\ vdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] bpmdata[y1:y2, x1:x2] =\ bdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] x1 = x2 x2 = x1 + xdsec2[1] y1 = ydsec2[0] - 1 if ysh[i + 1] < 0: y1 += abs(ysh[i + 1] / ybin) y2 = y1 + ydsec2[1] outdata[y1:y2, x1:x2] =\ imdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] if varframe: vardata[y1:y2, x1:x2] =\ vdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] bpmdata[y1:y2, x1:x2] =\ bdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] # size of new image naxis1 = str(xdsec1[1] + xdsec2[1]) naxis2 = str(ydsec1[1]) # add image and keywords to HDU list tilehdu[i + 1] = fits.ImageHDU(outdata) tilehdu[i + 1].header = struct[hdu].header #tilehdu[ # i + 1].header['DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' if varframe: vext = i + 1 + int(nsciext / 2.) tilehdu[vext] = fits.ImageHDU(vardata) #tilehdu[vext].header = struct[struct[hdu].header['VAREXT']].header #tilehdu[vext].header[ # 'DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' bext = i + 1 + 2 * int(nsciext / 2.) tilehdu[bext] = fits.ImageHDU(bpmdata) #tilehdu[bext].header = struct[struct[hdu].header['BPMEXT']].header #tilehdu[bext].header[ # 'DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' # image tile log message #1 if log: message = os.path.basename(infile) + '[' + str(hdu) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + '] --> ' message += os.path.basename(tilefile) + '[' + str(i + 1) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + ']' log.message(message, with_stdout=verbose, with_header=False) message = os.path.basename(infile) + '[' + str(hdu + 1) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + '] --> ' message += os.path.basename(tilefile) + '[' + str(i + 1) + '][' message += str(xdsec1[1] + 1) + ':' + \ str(xdsec1[1] + xdsec2[1]) + ',' message += str(ydsec2[0]) + ':' + str(ydsec2[1]) + ']' log.message(message, with_stdout=verbose, with_header=False) # write temporary file of tiled CCDs hdulist = fits.HDUList(tilehdu) hdulist.writeto(tilefile) # iterate over CCDs, transform and rotate images yrot = [None] * 4 xrot = [None] * 4 tranfile = [' '] tranhdu = [0] if varframe: tranfile = [''] * (3 * int(nsciext / 2) + 1) tranhdu = [0] * (3 * int(nsciext / 2) + 1) else: tranfile = [''] * int(nsciext / 2 + 1) tranhdu = [0] * int(nsciext / 2 + 1) # this is hardwired for SALT where the second CCD is considered the # fiducial for hdu in range(1, int(nsciext / 2 + 1)): tranfile[hdu] = saltio.tmpfile(outpath) tranfile[hdu] += 'tran.fits' if varframe: tranfile[hdu + nccds] = saltio.tmpfile(outpath) + 'tran.fits' tranfile[hdu + 2 * nccds] = saltio.tmpfile(outpath) + 'tran.fits' ccd = hdu % nccds if (ccd == 0): ccd = nccds # correct rotation for CCD binning yrot[ccd] = rot[ccd] * ybin / xbin xrot[ccd] = rot[ccd] * xbin / ybin dxshift = xbin * int(float(int(gap) / xbin) + 0.5) - gap # transformation using geotran IRAF task # if (ccd == 1): if (ccd != 2): if geotran: message = '\nSALTMOSAIC -- geotran ' + tilefile + \ '[' + str(ccd) + '] ' + tranfile[hdu] message += ' \"\" \"\" xshift=' + \ str((xsh[ccd] + (2 - ccd) * dxshift) / xbin) + ' ' message += 'yshift=' + \ str(ysh[ccd] / ybin) + ' xrotation=' + str(xrot[ccd]) + ' ' message += 'yrotation=' + \ str(yrot[ccd]) + ' xmag=1 ymag=1 xmin=\'INDEF\'' message += 'xmax=\'INDEF\' ymin=\'INDEF\' ymax=\'INDEF\' ' message += 'ncols=\'INDEF\' ' message += 'nlines=\'INDEF\' verbose=\'no\' ' message += 'fluxconserve=\'yes\' nxblock=2048 ' message += 'nyblock=2048 interpolant=\'' + \ interp_type + '\' boundary=\'constant\' constant=0' log.message(message, with_stdout=verbose) yd, xd = tilehdu[ccd].data.shape ncols = 'INDEF' # ncols=xd+abs(xsh[ccd]/xbin) nlines = 'INDEF' # nlines=yd+abs(ysh[ccd]/ybin) geo_xshift = xsh[ccd] + (2 - ccd) * dxshift / xbin geo_yshift = ysh[ccd] / ybin iraf.images.immatch.geotran(tilefile + "[" + str(ccd) + "]", tranfile[hdu], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) if varframe: var_infile = tilefile + "[" + str(ccd + nccds) + "]" iraf.images.immatch.geotran(var_infile, tranfile[hdu + nccds], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) var2_infile = tilefile + "[" + str(ccd + 2 * nccds) + "]" iraf.images.immatch.geotran(var2_infile, tranfile[hdu + 2 * nccds], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) # open the file and copy the data to tranhdu tstruct = fits.open(tranfile[hdu]) tranhdu[hdu] = tstruct[0].data tstruct.close() if varframe: tranhdu[hdu + nccds] = fits.open(tranfile[hdu + nccds])[0].data tranhdu[hdu + 2 * nccds] = fits.open( tranfile[hdu + 2 * nccds])[0].data else: log.message("Transform CCD #%i using dx=%s, dy=%s, rot=%s" % (ccd, xsh[ccd] / 2.0, ysh[ccd] / 2.0, xrot[ccd]), with_stdout=verbose, with_header=False) tranhdu[hdu] = geometric_transform( tilehdu[ccd].data, tran_func, prefilter=False, order=1, extra_arguments=(xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) tstruct = fits.PrimaryHDU(tranhdu[hdu]) tstruct.writeto(tranfile[hdu]) if varframe: tranhdu[hdu + nccds] = geometric_transform( tilehdu[hdu + 3].data, tran_func, prefilter=False, order=1, extra_arguments=(xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) tranhdu[hdu + 2 * nccds] = geometric_transform( tilehdu[hdu + 6].data, tran_func, prefilter=False, order=1, extra_arguments=(xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) else: log.message("Transform CCD #%i using dx=%s, dy=%s, rot=%s" % (ccd, 0, 0, 0), with_stdout=verbose, with_header=False) tranhdu[hdu] = tilehdu[ccd].data if varframe: tranhdu[hdu + nccds] = tilehdu[ccd + nccds].data tranhdu[hdu + 2 * nccds] = tilehdu[ccd + 2 * nccds].data # open outfile if varframe: outlist = 4 * [None] else: outlist = 2 * [None] #outlist[0] = struct[0].copy() outlist[0] = fits.PrimaryHDU() outlist[0].header = struct[0].header naxis1 = int(gap / xbin * (nccds - 1)) naxis2 = 0 for i in range(1, nccds + 1): yw, xw = tranhdu[i].shape naxis1 += xw + int(abs(xsh[ccd] / xbin)) + 1 naxis2 = max(naxis2, yw) outdata = numpy.zeros((naxis2, naxis1), numpy.float32) outdata.shape = naxis2, naxis1 if varframe: vardata = outdata * 0 bpmdata = outdata * 0 + 1 # iterate over CCDs, stich them to produce a full image hdu = 0 totxshift = 0 for hdu in range(1, nccds + 1): # read DATASEC keywords ydsec, xdsec = tranhdu[hdu].shape # define size and shape of final image # tile CCDs to yield mosaiced image x1 = int((hdu - 1) * (xdsec + gap / xbin)) + int(totxshift) x2 = xdsec + x1 y1 = int(0) y2 = int(ydsec) outdata[y1:y2, x1:x2] = tranhdu[hdu] totxshift += int(abs(xsh[hdu] / xbin)) + 1 if varframe: vardata[y1:y2, x1:x2] = tranhdu[hdu + nccds] bpmdata[y1:y2, x1:x2] = tranhdu[hdu + 2 * nccds] # make sure to cover up all the gaps include bad areas if varframe: baddata = (outdata == 0) baddata = nd.maximum_filter(baddata, size=3) bpmdata[baddata] = 1 # fill in the gaps if requested if fill: if varframe: outdata = fill_gaps(outdata, 0) else: outdata = fill_gaps(outdata, 0) # add to the file outlist[1] = fits.ImageHDU(outdata) if varframe: outlist[2] = fits.ImageHDU(vardata, name='VAR') outlist[3] = fits.ImageHDU(bpmdata, name='BPM') # create the image structure outstruct = fits.HDUList(outlist) # update the head informaation # housekeeping keywords saltkey.put('NEXTEND', 2, outstruct[0]) saltkey.new('EXTNAME', 'SCI', 'Extension name', outstruct[1]) saltkey.new('EXTVER', 1, 'Extension number', outstruct[1]) if varframe: saltkey.new('VAREXT', 2, 'Variance frame extension', outstruct[1]) saltkey.new('BPMEXT', 3, 'BPM Extension', outstruct[1]) try: saltkey.copy(struct[1], outstruct[1], 'CCDSUM') except: pass # Add keywords associated with geometry saltkey.new('SGEOMGAP', gap, 'SALT Chip Gap', outstruct[0]) c1str = '{:3.2f} {:3.2f} {:3.4f}'.format(xshift[0], yshift[0], rotation[0]) saltkey.new('SGEOM1', c1str, 'SALT Chip 1 Transform', outstruct[0]) c2str = '{:3.2f} {:3.2f} {:3.4f}'.format(xshift[1], yshift[1], rotation[1]) saltkey.new('SGEOM2', c2str, 'SALT Chip 2 Transform', outstruct[0]) # WCS keywords saltkey.new('CRPIX1', 0, 'WCS: X reference pixel', outstruct[1]) saltkey.new('CRPIX2', 0, 'WCS: Y reference pixel', outstruct[1]) saltkey.new('CRVAL1', float(xbin), 'WCS: X reference coordinate value', outstruct[1]) saltkey.new('CRVAL2', float(ybin), 'WCS: Y reference coordinate value', outstruct[1]) saltkey.new('CDELT1', float(xbin), 'WCS: X pixel size', outstruct[1]) saltkey.new('CDELT2', float(ybin), 'WCS: Y pixel size', outstruct[1]) saltkey.new('CTYPE1', 'pixel', 'X type', outstruct[1]) saltkey.new('CTYPE2', 'pixel', 'Y type', outstruct[1]) # cleanup temporary files if cleanup: for tfile in tranfile: if os.path.isfile(tfile): saltio.delete(tfile) if os.path.isfile(tilefile): status = saltio.delete(tilefile) # return the file return outstruct
def bias(struct, subover=True, trim=True, subbias=False, bstruct=None, median=False, function='polynomial', order=3, rej_lo=3, rej_hi=3, niter=10, plotover=False, log=None, verbose=True): """Bias subtracts the bias levels from a frame. It will fit and subtract the overscan region, trim the images, and subtract a master bias if required. struct--image structure subover--subtract the overscan region trim--trim the image subbias--subtract master bias bstruct--master bias image structure median--use the median instead of mean in image statistics function--form to fit to the overscan region order--order for the function rej_lo--sigma of low points to reject in the fit rej_hi--sigma of high points to reject in the fit niter--number of iterations log--saltio log for recording information verbose--whether to print to stdout """ infile = saltkey.getimagename(struct[0]) # how many extensions? nsciext = saltkey.get('NSCIEXT', struct[0]) nextend = saltkey.get('NEXTEND', struct[0]) nccd = saltkey.get('NCCDS', struct[0]) # how many amplifiers?--this is hard wired amplifiers = 2 * nccd #log the process if subover and log: message = '%28s %7s %5s %4s %6s' % \ ('HDU','Overscan','Order','RMS','Niter') log.message( '\n --------------------------------------------------', with_header=False, with_stdout=verbose) log.message(message, with_header=False, with_stdout=verbose) log.message(' --------------------------------------------------', with_header=False, with_stdout=verbose) if (plotover): plt.figure(1) plt.axes([0.1, 0.1, 0.8, 0.8]) plt.xlabel('CCD Column') plt.ylabel('Pixel Counts (e-)') plt.ion() #loop through the extensions and subtract the bias for i in range(1, nsciext + 1): if struct[i].name == 'SCI': #get the bias section biassec = saltkey.get('BIASSEC', struct[i]) y1, y2, x1, x2 = saltio.getSection(biassec, iraf_format=True) #get the data section datasec = saltkey.get('DATASEC', struct[i]) dy1, dy2, dx1, dx2 = saltio.getSection(datasec, iraf_format=True) #setup the overscan region if subover: yarr = np.arange(y1, y2, dtype=float) data = struct[i].data odata = struct[i].data[y1:y2, x1:x2] if median: odata = np.median((struct[i].data[y1:y2, x1:x2]), axis=1) olevel = np.median((struct[i].data[y1:y2, x1:x2])) saltkey.new('OVERSCAN', '%f' % (olevel), 'Overscan median value', struct[i]) else: odata = np.mean((struct[i].data[y1:y2, x1:x2]), axis=1) olevel = np.mean((struct[i].data[y1:y2, x1:x2])) saltkey.new('OVERSCAN', '%f' % (olevel), 'Overscan mean value', struct[i]) #fit the overscan region ifit=saltfit.interfit(yarr, odata, function=function, \ order=order, thresh=rej_hi, niter=niter) try: ifit.interfit() coeffs = ifit.coef ofit = ifit(yarr) omean, omed, osigma = saltstat.iterstat((odata - ofit), sig=3, niter=5) except ValueError: #catch the error if it is a zero array ofit = np.array(yarr) * 0.0 osigma = 0.0 except TypeError: #catch the error if it is a zero array ofit = np.array(yarr) * 0.0 osigma = 0.0 #if it hasn't been already, convert image to #double format struct[i].data = 1.0 * struct[i].data try: struct[i].header.remove('BZERO') struct[i].header.remove('BSCALE') except: pass #subtract the overscan region for j in range(len(struct[i].data[0])): struct[i].data[y1:y2, j] -= ofit #report the information if log: message = '%25s[%1d] %8.2f %3d %7.2f %3d' % \ (infile, i, olevel, order, osigma, niter) log.message(message, with_stdout=verbose, with_header=False) #add the statistics to the image header saltkey.new('OVERRMS', '%f' % (osigma), 'Overscan RMS value', struct[i]) #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu = saltkey.get('VAREXT', struct[i]) try: vdata = struct[vhdu].data #The bias level should not be included in the noise from the signal for j in range(len(struct[i].data[0])): vdata[y1:y2, j] -= ofit #add a bit to make sure that the minimum error is the rednoise rdnoise = saltkey.get('RDNOISE', struct[i]) vdata[vdata < rdnoise**2] = rdnoise**2 struct[vhdu].data = vdata + osigma**2 except Exception, e: msg = 'Cannot update the variance frame in %s[%i] because %s' % ( infile, vhdu, e) raise SaltError(msg) #plot the overscan region if plotover: plt.plot(yarr, odata) plt.plot(yarr, ofit) #trim the data and update the headers if trim: struct[i].data = struct[i].data[dy1:dy2, dx1:dx2] datasec = '[1:' + str(dx2 - dx1) + ',1:' + str(dy2 - dy1) + ']' saltkey.put('DATASEC', datasec, struct[i]) #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu = saltkey.get('VAREXT', struct[i]) struct[vhdu].data = struct[vhdu].data[dy1:dy2, dx1:dx2] datasec = '[1:' + str(dx2 - dx1) + ',1:' + str(dy2 - dy1) + ']' saltkey.put('DATASEC', datasec, struct[vhdu]) #update the BPM frame if saltkey.found('BPMEXT', struct[i]): bhdu = saltkey.get('BPMEXT', struct[i]) struct[bhdu].data = struct[bhdu].data[dy1:dy2, dx1:dx2] datasec = '[1:' + str(dx2 - dx1) + ',1:' + str(dy2 - dy1) + ']' saltkey.put('DATASEC', datasec, struct[bhdu]) #subtract the master bias if necessary if subbias and bstruct: struct[i].data -= bstruct[i].data #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu = saltkey.get('VAREXT', struct[i]) try: vdata = struct[vhdu].data struct[vhdu].data = vdata + bstruct[vhdu].data except Exception, e: msg = 'Cannot update the variance frame in %s[%i] because %s' % ( infile, vhdu, e) raise SaltError(msg)
def slotmerge(images, outimages, outpref, geomfile, clobber, logfile, verbose): with logging(logfile, debug) as log: # are the arguments defined saltsafeio.argdefined('images', images) saltsafeio.argdefined('geomfile', geomfile) saltsafeio.argdefined('logfile', logfile) # if the input file is a list, does it exist? if images[0] == '@': saltsafeio.listexists('Input', images) # parse list of input files infiles = saltsafeio.listparse('Raw image', images, '', '', '') # check input files exist saltsafeio.filesexist(infiles, '', 'r') # load output name list: @list, * and comma separated outimages = outimages.strip() outpref = outpref.strip() if len(outpref) == 0 and len(outimages) == 0: raise SaltIOError('Output file(s) not specified') # test output @filelist exists if len(outimages) > 0 and outimages[0] == '@': saltsafeio.listexists('Output', outimages) # parse list of output files outfiles = saltsafeio.listparse('Output image', outimages, outpref, infiles, '') # are input and output lists the same length? saltsafeio.comparelists(infiles, outfiles, 'Input', 'output') # do the output files already exist? if not clobber: saltsafeio.filesexist(outfiles, '', 'w') # does CCD geometry definition file exist geomfilefile = geomfile.strip() saltsafeio.fileexists(geomfile) # read geometry definition file gap = 0 xshift = [0, 0] yshift = [0, 0] rotation = [0, 0] gap, xshift, yshift, rotation = saltsafeio.readccdgeom(geomfile) for ro in rotation: if ro != 0: log.warning('SLOTMERGE currently ignores CCD rotation') # Begin processes each file for infile, outfile in zip(infiles, outfiles): # determine the name for the output file outpath = outfile.rstrip(os.path.basename(outfile)) if (len(outpath) == 0): outpath = '.' # open each raw image struct = saltsafeio.openfits(infile) # identify instrument instrume, keyprep, keygain, keybias, keyxtalk, keyslot = saltsafekey.instrumid( struct, infile) # how many amplifiers? nccds = saltsafekey.get('NCCDS', struct[0], infile) amplifiers = nccds * 2 #if (nccds != 2): # raise SaltError('Can not currently handle more than two CCDs') # CCD geometry coefficients if instrume == 'RSS' or instrume == 'PFIS': xsh = [xshift[0], 0., xshift[1]] ysh = [yshift[0], 0., yshift[1]] rot = [rotation[0], 0., rotation[1]] refid = 1 if instrume == 'SALTICAM': xsh = [xshift[0], 0.] ysh = [yshift[0], 0.] rot = [rotation[0], 0] refid = 1 # how many extensions? nextend = saltsafekey.get('NEXTEND', struct[0], infile) # how many exposures exposures = nextend / amplifiers # CCD on-chip binning xbin, ybin = saltsafekey.ccdbin(struct[0], infile) gp = int(gap / xbin) # create output hdu structure outstruct = [None] * int(exposures + 1) outstruct[0] = struct[0] # iterate over exposures, stitch them to produce file of CCD images for i in range(exposures): # Determine the total size of the image xsize = 0 ysize = 0 for j in range(amplifiers): hdu = i * amplifiers + j + 1 try: xsize += len(struct[hdu].data[0]) if ysize < len(struct[hdu].data): ysize = len(struct[hdu].data) except: msg = 'Unable to access extension %i ' % hdu raise SaltIOError(msg) xsize += gp * (nccds - 1) maxxsh, minxsh = determineshifts(xsh) maxysh, minysh = determineshifts(ysh) xsize += (maxxsh - minxsh) ysize += (maxysh - minysh) # Determine the x and y origins for each frame xdist = 0 ydist = 0 shid = 0 x0 = np.zeros(amplifiers) y0 = np.zeros(amplifiers) for j in range(amplifiers): x0[j] = xdist + xsh[shid] - minxsh y0[j] = ysh[shid] - minysh hdu = i * amplifiers + j + 1 darr = struct[hdu].data xdist += len(darr[0]) if j % 2 == 1: xdist += gp shid += 1 # make the out image outarr = np.zeros((ysize, xsize), np.float64) # Embed each frame into the output array for j in range(amplifiers): hdu = i * amplifiers + j + 1 darr = struct[hdu].data outarr = salttran.embed(darr, x0[j], y0[j], outarr) # Add the outimage to the output structure hdu = i * amplifiers + 1 outhdu = i + 1 outstruct[outhdu] = pyfits.ImageHDU(outarr) outstruct[outhdu].header = struct[hdu].header # Fix the headers in each extension datasec = '[1:%4i,1:%4i]' % (xsize, ysize) saltsafekey.put('DATASEC', datasec, outstruct[outhdu], outfile) saltsafekey.rem('DETSIZE', outstruct[outhdu], outfile) saltsafekey.rem('DETSEC', outstruct[outhdu], outfile) saltsafekey.rem('CCDSEC', outstruct[outhdu], outfile) saltsafekey.rem('AMPSEC', outstruct[outhdu], outfile) # add housekeeping key words outstruct[outhdu] = addhousekeeping(outstruct[outhdu], outhdu, outfile) # close input FITS file saltsafeio.closefits(struct) # housekeeping keywords keymosaic = 'SLOTMERG' fname, hist = history(level=1, wrap=False) saltsafekey.housekeeping(struct[0], keymosaic, 'Amplifiers have been mosaiced', hist) #saltsafekey.history(outstruct[0],hist) # this is added for later use by saltsafekey.put('NCCDS', 0.5, outstruct[0]) saltsafekey.put('NSCIEXT', exposures, outstruct[0]) saltsafekey.put('NEXTEND', exposures, outstruct[0]) # write FITS file of mosaiced image outstruct = pyfits.HDUList(outstruct) saltsafeio.writefits(outstruct, outfile, clobber=clobber)
sys.stdout.write(ctext) sys.stdout.flush() struct=saltsafeio.openupdatefits(infile) # Skip through the frames and read in the utc istart=1 if infile==infiles[0]: istart=ignorexp*amplifiers+1 for i in range(istart,len(struct), amplifiers): for k in range(0,amplifiers): if update: struct[i+k]=updateheaders(struct[i+k],i+k, t_diff[j], real_expt, utc_list[j], infile) if outfile: utc_new=saltsafekey.get('UTC-OBS', struct[i+k], infile) utc_new_sec=slottool.getobstime(struct[i], infile) fout.write('%25s %2i %12s %12s %7.3f %5.4f %4i \n' % (infile, i, utc_list[j], utc_new, utc_new_sec, t_diff[j], nd[j] )) j += 1 # Housekeeping key words if update: history = 'SALTUTCFIX -- ' history += 'images='+infile+' ' saltsafekey.housekeeping(struct[0],'SLOTUTC','UTC has been corrected',history,infile) # update fits file if update: saltsafeio.updatefits(struct) saltsafeio.closefits(struct)
def slotutcfix(images,update,outfile,ampperccd,ignorexp,droplimit,inter,plotdata,logfile,verbose,debug): with logging(logfile,debug) as log: # set up the variables utc_list = [] # is the input file specified? saltsafeio.filedefined('Input',images) # if the input file is a list, does it exist? if images[0] == '@': saltsafeio.listexists('Input',images) # parse list of input files and place them in order infiles=saltsafeio.listparse('Raw image',images,'','','') infiles.sort() # check input files exist saltsafeio.filesexist(infiles,'','r') # check to see if the output file exists and if so, clobber it if os.path.isfile(outfile): try: os.remove(outfile) except: raise SaltIOError('File ' + outfile + ' can not be removed') # open the outfile if outfile: try: fout=open(outfile,'w') except: raise SaltIOError('File ' + outfile + ' can not be opened') # get time of first exposure and basic information about the observations infile=infiles[0] struct=saltsafeio.openfits(infile) # check to make sure slotmode data detmode=saltsafekey.get('DETMODE',struct[0], infile) if detmode != 'Slot Mode': raise SaltIOError('Data are not Slot Mode Observations') # Check to see if SLOTUTCFIX has already been run # and print a warning if they have if saltsafekey.found('SLOTUTC', struct[0]): message='Data have already been processed by SLOTUTCFIX' log.warning(message) # check to make sure that it is the right version of the software scamver=saltsafekey.get('DETSWV', struct[0], infile) try: scamver=float(scamver.split('-')[-1]) if 4.42 <= scamver <= 5.00: pass else: raise SaltError('cannot currently correct this version of the SCAM software.') except: raise SaltError('Not able to read software version') # requested exposure time req_texp=saltsafekey.get('EXPTIME',struct[0],infile) # how many extensions? nextend=saltsafekey.get('NEXTEND',struct[0],infile) # how many amplifiers amplifiers=saltsafekey.get('NCCDS',struct[0],infile) amplifiers = int(ampperccd*float(amplifiers)) if ampperccd>0: nframes = nextend/amplifiers nstep=amplifiers else: nframes = nextend nstep=1 # how many total frame and unique times ntotal=nextend*len(infiles) nunique=len(infiles)*nframes-ignorexp+1 # Create arrays necessary for analysis id_arr=np.arange(nunique) utc_arr=np.zeros(nunique,dtype=float) # Read in each file and make a list of the UTC values if verbose: log.message('Reading in files to create list of UTC values.') j=0 for n,infile in enumerate(infiles): # Show progress if verbose: percent=100.*float(n)/float(len(infiles)) ctext='Percentage Complete: %.2f\r' % percent sys.stdout.write(ctext) sys.stdout.flush() struct=saltsafeio.openfits(infile) if not len(struct)-1==nextend: raise SaltIOError(infile,' has a different number of extensions from the first file') # Skip through the frames and read in the utc istart=1 if infile==infiles[0]: istart=ignorexp*amplifiers+1 for i in range(istart,len(struct), amplifiers): try: utc_list.append(saltsafekey.get('UTC-OBS', struct[i], infile)) utc_arr[j]=slottool.getobstime(struct[i], infile) j += 1 except Exception, e: raise SaltIOError('Unable to create array of UTC times. Please check the number of extensions in the files') # close FITS file saltsafeio.closefits(struct) # set up the other important arrays try: diff_arr=utc_arr.copy() diff_arr[1:]=diff_arr[1:]-utc_arr[:-1] diff_arr[0]=-1 dsec_arr=utc_arr-utc_arr.astype(int) except: raise SaltIOError('Unable to create timing arrays') # calculate the real exposure time if verbose: log.message('Calculating real exposure time.') real_expt, med_expt, t_start, t_arr, ysum_arr=calculate_realexptime(id_arr, utc_arr, dsec_arr, diff_arr, req_texp, utc_list) # plot the results if plotdata: if verbose: log.message('Plotting data.') plt.ion() plt.plot(t_arr,ysum_arr,linewidth=0.5,linestyle='-',marker='',color='b') plt.xlabel('Time (s)') plt.ylabel('Fit') # Calculate the corrrect values if verbose: log.message('Calculating correct values') i_start = abs(utc_arr-t_start).argmin() t_diff=utc_arr*0.0+real_expt nd=utc_arr*0.0 ndrop=0 for i in range(len(utc_arr)): if utc_arr[i] >= t_start: t_new=t_start+real_expt*(i-i_start+ndrop) t_diff[i]=utc_arr[i]-t_new while (t_diff[i]>real_expt and nd[i] < droplimit): nd[i]+= 1 t_new=t_start+real_expt*(i-i_start+ndrop+nd[i]) t_diff[i]=utc_arr[i]-t_new if (nd[i]<droplimit): ndrop += nd[i] else: t_new=t_start+real_expt*(i-i_start) t_diff[i]=utc_arr[i]-t_new while (t_diff[i]>real_expt and nd[i] < droplimit): nd[i]+= 1 t_new=t_start+real_expt*(i-i_start-nd[i]) t_diff[i]=utc_arr[i]-t_new # calculate the corrected timestamp by counting 6 record files forward and # 8 recored + unrecorded files back--or just 8*t_exp forward. # if the object is near the end of the run, then just replace it with # the correct value assuming no dropped exposures. # first make the array of new times new_arr=utc_arr-t_diff # Next loop through them to find the corrected time corr_arr=utc_arr*0.0 for i in range(len(new_arr)): if i+6 < len(new_arr)-1: corr_arr[i]=new_arr[i+6]-8*real_expt else: corr_arr[i]=new_arr[i]-2*real_expt t_diff=utc_arr-corr_arr # write out the first results msg="Dwell Time=%5.3f Requested Exposure Time=%5.3f Nobs = %i Dropped = %i" % (real_expt, req_texp, nunique, ndrop) if verbose: log.message(msg) if outfile: fout.write('#'+msg+'\n') fout.write('#%23s %2s %12s %12s %10s %8s %4s \n' % ('File', 'N', 'UTC_old', 'UTC_new', 'UTC_new(s)', 'Diff', 'drop' )) # Give the user a chance to update the value if inter: message='Update headers with a dwell time of %5.3f s [y/n]? ' % real_expt update=saltsafeio.yn_ask(message) if not update: message='Set Dwell Time manually [y/n]? ' update=saltsafeio.yn_ask(message) if update: message='New Dwell Time: ' real_expt=saltsafeio.ask(message) try: real_expt=float(real_expt) except Exception, e: msg='Could not set user dwell time because %s' % e raise SaltError(msg)
def specslitnormalize(images, outimages, outpref, response=None, response_output=None, order=2, conv=1e-2, niter=20, startext=0, clobber=False, logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outfiles = saltio.listparse('Outfile', outimages, outpref, infiles, '') # read in the response function response = saltio.checkfornone(response) if response: log.message('Loading response from %s' % response) response = readresponse(response) # Identify the lines in each file for img, ofile in zip(infiles, outfiles): # open the image hdu = saltio.openfits(img) for i in range(startext, len(hdu)): if hdu[i].name == 'SCI': log.message('Normalizing extension %i in %s' % (i, img)) # things that will change for each slit # set up the data for the source try: data = hdu[i].data except Exception as e: message = \ 'Unable to read in data array in %s because %s' % \ (img, e) raise SALTSpecError(message) if response is None: response = create_response(data, spatial_axis=1, order=order, conv=conv, niter=niter) if response_output: write_response(response, clobber=clobber) else: # add a check that the response is the same shape as # the data if len(response) != data.shape[0]: raise SALTSpecError( 'Length of response function does not equal size of image array' ) # correct the data data = data / response # correct the variance frame if saltkey.found('VAREXT', hdu[i]): vhdu = saltkey.get('VAREXT', hdu[i]) hdu[vhdu].data = hdu[vhdu].data / response saltio.writefits(hdu, ofile, clobber=clobber)
try: obsdate = int('%s%s%s' % (obsdate[0:4], obsdate[5:7], obsdate[8:])) xkey = np.array(xdict.keys()) date = xkey[abs(xkey - obsdate).argmin()] xcoeff = xdict[date] except Exception, e: msg = 'WARNING--Can not find xtalk coefficient for %s because %s' % ( e, infile) if log: log.warning(msg) xcoeff = xdict[xdict.keys()[-1]] else: xcoeff = [] struct = xtalk(struct, xcoeff, log=log, verbose=verbose) #bias correct the files if saltkey.fastmode(saltkey.get('DETMODE', struct[0])): order = 1 struct = bias(struct, subover=subover, trim=trim, subbias=subbias, bstruct=bstruct, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose)
def specarcstraighten(images, outfile, function='poly', order=3, rstep=1, rstart='middlerow', nrows=1, y1=None, y2=None, sigma=5, sections=3, niter=5, startext=0, clobber=False, logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outfiles = saltio.argunpack('Output', outfile) # Identify the lines in each file for img, ofile in zip(infiles, outfiles): # open the image hdu = saltio.openfits(img) # get the basic information about the spectrograph dateobs = saltkey.get('DATE-OBS', hdu[0]) try: utctime = saltkey.get('UTC-OBS', hdu[0]) except SaltError: utctime = saltkey.get('TIME-OBS', hdu[0]) instrume = saltkey.get('INSTRUME', hdu[0]).strip() grating = saltkey.get('GRATING', hdu[0]).strip() grang = saltkey.get('GR-ANGLE', hdu[0]) grasteps = saltkey.get('GRTILT', hdu[0]) arang = saltkey.get('AR-ANGLE', hdu[0]) arsteps = saltkey.get('CAMANG', hdu[0]) rssfilter = saltkey.get('FILTER', hdu[0]) specmode = saltkey.get('OBSMODE', hdu[0]) masktype = saltkey.get('MASKTYP', hdu[0]).strip().upper() slitname = saltkey.get('MASKID', hdu[0]) xbin, ybin = saltkey.ccdbin(hdu[0], img) for i in range(startext, len(hdu)): if hdu[i].name == 'SCI': log.message('Proccessing extension %i in %s' % (i, img)) # things that will change for each slit if masktype == 'LONGSLIT': slit = st.getslitsize(slitname) objid = None #elif masktype == 'MOS': #slit = 1.5 # slit=saltkey.get('SLIT', hdu[i]) # set up the x and y positions #miny = hdu[i].header['MINY'] #maxy = hdu[i].header['MAXY'] #ras = hdu[i].header['SLIT_RA'] #des = hdu[i].header['SLIT_DEC'] #objid = hdu[i].header['SLITNAME'] # Check the perfomance of masks at different PA #rac = hdu[0].header['MASK_RA'] #dec = hdu[0].header['MASK_DEC'] #pac = hdu[0].header['PA'] else: msg = '%s is not a currently supported masktype' % masktype raise SALTSpecError(msg) if instrume not in ['PFIS', 'RSS']: msg = '%s is not a currently supported instrument' % instrume raise SALTSpecError(msg) # set up the data for the source try: data = hdu[i].data except Exception as e: message = 'Unable to read in data array in %s because %s' % ( img, e) raise SALTSpecError(message) # set up the center row if rstart == 'middlerow': ystart = int(0.5 * len(data)) else: ystart = rstart # set up the xarr array based on the image xarr = np.arange(len(data[ystart]), dtype='int64') # calculate the transformation ImageSolution = arcstraight(data, xarr, ystart, function=function, order=order, rstep=rstep, y1=y1, y2=y2, sigma=sigma, sections=sections, niter=niter, log=log, verbose=verbose) if outfile and len(ImageSolution): writeIS(ImageSolution, outfile, dateobs=dateobs, utctime=utctime, instrume=instrume, grating=grating, grang=grang, grasteps=grasteps, arsteps=arsteps, arang=arang, rfilter=rssfilter, slit=slit, xbin=xbin, ybin=ybin, objid=objid, filename=img, log=log, verbose=verbose)
def saltclean(images, outpath, obslogfile=None, gaindb=None, xtalkfile=None, geomfile=None, subover=True, trim=True, masbias=None, subbias=False, median=False, function='polynomial', order=5, rej_lo=3, rej_hi=3, niter=5, interp='linear', clobber=False, logfile='salt.log', verbose=True): """SALTCLEAN will provide basic CCD reductions for a set of data. It will sort the data, and first process the biases, flats, and then the science frames. It will record basic quality control information about each of the steps. """ plotover = False #start logging with logging(logfile, debug) as log: # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outpath = saltio.abspath(outpath) #does the gain database file exist if gaindb: dblist = saltio.readgaindb(gaindb) else: dblist = [] # does crosstalk coefficient data exist if xtalkfile: xtalkfile = xtalkfile.strip() xdict = saltio.readxtalkcoeff(xtalkfile) else: xdict = None #does the mosaic file exist--raise error if no saltio.fileexists(geomfile) # Delete the obslog file if it already exists if os.path.isfile(obslogfile) and clobber: saltio.delete(obslogfile) #read in the obsveration log or create it if os.path.isfile(obslogfile): msg = 'The observing log already exists. Please either delete it or run saltclean with clobber=yes' raise SaltError(msg) else: headerDict = obslog(infiles, log) obsstruct = createobslogfits(headerDict) saltio.writefits(obsstruct, obslogfile) #create the list of bias frames and process them filename = obsstruct.data.field('FILENAME') detmode = obsstruct.data.field('DETMODE') ccdtype = obsstruct.data.field('CCDTYPE') #set the bias list of objects biaslist = filename[ccdtype == 'ZERO'] masterbias_dict = {} for img in infiles: if os.path.basename(img) in biaslist: #open the image struct = fits.open(img) bimg = outpath + 'bxgp' + os.path.basename(img) #print the message if log: message = 'Processing Zero frame %s' % img log.message(message, with_stdout=verbose) #process the image struct = clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist = history( level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN', time.asctime(time.localtime()), 'Images have been gain corrected', struct[0]) saltkey.new('SXTALK', time.asctime(time.localtime()), 'Images have been xtalk corrected', struct[0]) saltkey.new('SBIAS', time.asctime(time.localtime()), 'Images have been de-biased', struct[0]) # write FITS file saltio.writefits(struct, bimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterbias_dict = compareimages(struct, bimg, masterbias_dict, keylist=biasheader_list) #create the master bias frame for i in masterbias_dict.keys(): bkeys = masterbias_dict[i][0] blist = masterbias_dict[i][1:] mbiasname = outpath + createmasterbiasname(blist, bkeys) bfiles = ','.join(blist) saltcombine(bfiles, mbiasname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #create the list of flatfields and process them flatlist = filename[ccdtype == 'FLAT'] masterflat_dict = {} for img in infiles: if os.path.basename(img) in flatlist: #open the image struct = fits.open(img) fimg = outpath + 'bxgp' + os.path.basename(img) #print the message if log: message = 'Processing Flat frame %s' % img log.message(message, with_stdout=verbose) #process the image struct = clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist = history( level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN', time.asctime(time.localtime()), 'Images have been gain corrected', struct[0]) saltkey.new('SXTALK', time.asctime(time.localtime()), 'Images have been xtalk corrected', struct[0]) saltkey.new('SBIAS', time.asctime(time.localtime()), 'Images have been de-biased', struct[0]) # write FITS file saltio.writefits(struct, fimg, clobber=clobber) saltio.closefits(struct) #add files to the master bias list masterflat_dict = compareimages(struct, fimg, masterflat_dict, keylist=flatheader_list) #create the master flat frame for i in masterflat_dict.keys(): fkeys = masterflat_dict[i][0] flist = masterflat_dict[i][1:] mflatname = outpath + createmasterflatname(flist, fkeys) ffiles = ','.join(flist) saltcombine(ffiles, mflatname, method='median', reject='sigclip', mask=False, weight=False, blank=0, scale=None, statsec=None, lthresh=3, \ hthresh=3, clobber=False, logfile=logfile,verbose=verbose) #process the science data for img in infiles: nimg = os.path.basename(img) #print nimg, nimg in flatlist, nimg in biaslist if not (nimg in biaslist): #open the image struct = fits.open(img) simg = outpath + 'bxgp' + os.path.basename(img) #print the message if log: message = 'Processing science frame %s' % img log.message(message, with_stdout=verbose) #process the image struct = clean(struct, createvar=False, badpixelstruct=None, mult=True, dblist=dblist, xdict=xdict, subover=subover, trim=trim, subbias=False, bstruct=None, median=median, function=function, order=order, rej_lo=rej_lo, rej_hi=rej_hi, niter=niter, plotover=plotover, log=log, verbose=verbose) #write the file out # housekeeping keywords fname, hist = history( level=1, wrap=False, exclude=['images', 'outimages', 'outpref']) saltkey.housekeeping(struct[0], 'SPREPARE', 'Images have been prepared', hist) saltkey.new('SGAIN', time.asctime(time.localtime()), 'Images have been gain corrected', struct[0]) saltkey.new('SXTALK', time.asctime(time.localtime()), 'Images have been xtalk corrected', struct[0]) saltkey.new('SBIAS', time.asctime(time.localtime()), 'Images have been de-biased', struct[0]) # write FITS file saltio.writefits(struct, simg, clobber=clobber) saltio.closefits(struct) #mosaic the files--currently not in the proper format--will update when it is if not saltkey.fastmode(saltkey.get('DETMODE', struct[0])): mimg = outpath + 'mbxgp' + os.path.basename(img) saltmosaic(images=simg, outimages=mimg, outpref='', geomfile=geomfile, interp=interp, cleanup=True, clobber=clobber, logfile=logfile, verbose=verbose) #remove the intermediate steps saltio.delete(simg)
def specidentify(images, linelist, outfile, guesstype='rss', guessfile='', automethod='Matchlines', function='poly', order=3, rstep=100, rstart='middlerow', mdiff=5, thresh=3, niter=5, smooth=0, subback=0, inter=True, startext=0, clobber=False, textcolor='black', logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # set up the variables infiles = [] outfiles = [] # Check the input images infiles = saltio.argunpack('Input', images) # create list of output files outfiles = saltio.argunpack('Output', outfile) # open the line lists slines, sfluxes = st.readlinelist(linelist) # Identify the lines in each file for img, ofile in zip(infiles, outfiles): # open the image hdu = saltio.openfits(img) # get the basic information about the spectrograph dateobs = saltkey.get('DATE-OBS', hdu[0]) try: utctime = saltkey.get('UTC-OBS', hdu[0]) except SaltError: utctime = saltkey.get('TIME-OBS', hdu[0]) instrume = saltkey.get('INSTRUME', hdu[0]).strip() grating = saltkey.get('GRATING', hdu[0]).strip() grang = saltkey.get('GR-ANGLE', hdu[0]) grasteps = saltkey.get('GRTILT', hdu[0]) arang = saltkey.get('AR-ANGLE', hdu[0]) arsteps = saltkey.get('CAMANG', hdu[0]) rssfilter = saltkey.get('FILTER', hdu[0]) specmode = saltkey.get('OBSMODE', hdu[0]) masktype = saltkey.get('MASKTYP', hdu[0]).strip().upper() slitname = saltkey.get('MASKID', hdu[0]) xbin, ybin = saltkey.ccdbin(hdu[0], img) for i in range(startext, len(hdu)): if hdu[i].name == 'SCI': log.message('Proccessing extension %i in %s' % (i, img)) # things that will change for each slit if masktype == 'LONGSLIT': slit = st.getslitsize(slitname) xpos = -0.2666 ypos = 0.0117 objid = None elif masktype == 'MOS': slit = 1.5 #slit=saltkey.get('SLIT', hdu[i]) # set up the x and y positions miny = hdu[i].header['MINY'] maxy = hdu[i].header['MAXY'] ras = hdu[i].header['SLIT_RA'] des = hdu[i].header['SLIT_DEC'] objid = hdu[i].header['SLITNAME'] # TODO: Check the perfomance of masks at different PA rac = hdu[0].header['MASK_RA'] dec = hdu[0].header['MASK_DEC'] pac = hdu[0].header['PA'] # these are hard wired at the moment xpixscale = 0.1267 * xbin ypixscale = 0.1267 * ybin cx = int(3162 / xbin) cy = int(2050 / ybin) x, y = mt.convert_fromsky(ras, des, rac, dec, xpixscale=xpixscale, ypixscale=ypixscale, position_angle=-pac, ccd_cx=cx, ccd_cy=cy) xpos = 0.015 * 2 * (cx - x[0]) ypos = 0.0117 else: msg = '%s is not a currently supported masktype' % masktype raise SALTSpecError(msg) if instrume not in ['PFIS', 'RSS']: msg = '%s is not a currently supported instrument' % instrume raise SALTSpecError(msg) # create RSS Model rss = RSSModel.RSSModel(grating_name=grating.strip(), gratang=grang, camang=arang, slit=slit, xbin=xbin, ybin=ybin, xpos=xpos, ypos=ypos) res = 1e7 * rss.calc_resolelement(rss.alpha(), -rss.beta()) dres = res / 10.0 wcen = 1e7 * rss.calc_centralwavelength() R = rss.calc_resolution( wcen / 1e7, rss.alpha(), -rss.beta()) logmsg = '\nGrating\tGR-ANGLE\tAR-ANGLE\tSlit\tWCEN\tR\n' logmsg += '%s\t%8.3f\t%8.3f\t%4.2f\t%6.2f\t%4f\n' % ( grating, grang, arang, slit, wcen, R) if log: log.message(logmsg, with_header=False) # set up the data for the source try: data = hdu[i].data except Exception as e: message = 'Unable to read in data array in %s because %s' % ( img, e) raise SALTSpecError(message) # set up the center row if rstart == 'middlerow': ystart = int(0.5 * len(data)) else: ystart = int(rstart) rss.gamma = 0.0 if masktype == 'MOS': rss.gamma = 180.0 / math.pi * math.atan((y * rss.detector.pix_size * rss.detector.ybin - 0.5 * rss.detector.find_height()) / rss.camera.focallength) # set up the xarr array based on the image xarr = np.arange(len(data[ystart]), dtype='int64') # get the guess for the wavelength solution if guesstype == 'rss': # set up the rss model ws = st.useRSSModel( xarr, rss, function=function, order=order, gamma=rss.gamma) elif guesstype == 'file': soldict = {} soldict = readsolascii(guessfile, soldict) timeobs = enterdatetime('%s %s' % (dateobs, utctime)) exptime = saltkey.get('EXPTIME', hdu[0]) filtername = saltkey.get('FILTER', hdu[0]).strip() try: slitid = saltkey.get('SLITNAME', hdu[i]) except: slitid = None function, order, coef = findlinesol( soldict, ystart, True, timeobs, exptime, instrume, grating, grang, arang, filtername, slitid, xarr=xarr) ws = WavelengthSolution.WavelengthSolution( xarr, xarr, function=function, order=order) ws.set_coef(coef) else: raise SALTSpecError( 'This guesstype is not currently supported') # identify the spectral lines ImageSolution = identify(data, slines, sfluxes, xarr, ystart, ws=ws, function=function, order=order, rstep=rstep, mdiff=mdiff, thresh=thresh, niter=niter, method=automethod, res=res, dres=dres, smooth=smooth, inter=inter, filename=img, subback=0, textcolor=textcolor, log=log, verbose=verbose) if outfile and len(ImageSolution): writeIS(ImageSolution, outfile, dateobs=dateobs, utctime=utctime, instrume=instrume, grating=grating, grang=grang, grasteps=grasteps, arsteps=arsteps, arang=arang, rfilter=rssfilter, slit=slit, xbin=xbin, ybin=ybin, objid=objid, filename=img, log=log, verbose=verbose)
def rectify(hdu, soldict, caltype='line', function='poly', order=3, inttype='interp', w1=None, w2=None, dw=None, nw=None, blank=0, pixscale=0.0, time_interp=False, clobber=True, log=None, verbose=True): """Read in an image and a set of wavlength solutions. Calculate the best wavelength solution for a given dataset and then apply that data set to the image return """ #set the set_w1=(w1 is None) set_w2=(w2 is None) set_dw=(dw is None) set_nw=(nw is None) #set up the time of the observation dateobs=saltkey.get('DATE-OBS', hdu[0]) utctime=saltkey.get('TIME-OBS', hdu[0]) exptime=saltkey.get('EXPTIME', hdu[0]) instrume=saltkey.get('INSTRUME', hdu[0]).strip() grating=saltkey.get('GRATING', hdu[0]).strip() if caltype=='line': grang=saltkey.get('GRTILT', hdu[0]) arang=saltkey.get('CAMANG', hdu[0]) else: grang=saltkey.get('GR-ANGLE', hdu[0]) arang=saltkey.get('AR-ANGLE', hdu[0]) filtername=saltkey.get('FILTER', hdu[0]).strip() slitname=saltkey.get('MASKID', hdu[0]) slit=st.getslitsize(slitname) xbin, ybin = saltkey.ccdbin( hdu[0]) timeobs=enterdatetime('%s %s' % (dateobs, utctime)) #check to see if there is more than one solution if caltype=='line': if len(soldict)==1: sol=soldict.keys()[0] slitid=None if not matchobservations(soldict[sol], instrume, grating, grang, arang, filtername, slitid): msg='Observations do not match setup for transformation but using the solution anyway' if log: log.warning(msg) for i in range(1,len(hdu)): if hdu[i].name=='SCI': if log: log.message('Correcting extension %i' % i) istart=int(0.5*len(hdu[i].data)) #open up the data #set up the xarr and initial wavlength solution xarr=np.arange(len(hdu[i].data[istart]), dtype='int64') #get the slitid try: slitid=saltkey.get('SLITNAME', hdu[i]) except: slitid=None #set up a wavelength solution try: w_arr=findsol(xarr, soldict, istart, caltype, timeobs, exptime, instrume, grating, grang, arang, filtername, slit, xbin, ybin, slitid, function, order ) except SALTSpecError, e: if slitid: msg='SLITID %s: %s' % (slitid, e) if log: log.warning(msg) continue else: raise SALTSpecError(e) if w_arr is None: w_arr=findsol(xarr, soldict, istart, 'rss', timeobs, exptime, instrume, grating, grang, arang, filtername, slit, xbin, ybin, slitid, function, order ) #set up the output x-axis if set_w1: w1=w_arr.min() if set_w2: w2=w_arr.max() if set_nw: nw=len(xarr) if set_dw: dw=float(w2-w1)/nw nw_arr=createoutputxaxis(w1, w2, nw) #setup the VARIANCE and BPM frames if saltkey.found('VAREXT', hdu[i]): varext=saltkey.get('VAREXT', hdu[i]) else: varext=None #setup the BPM frames if saltkey.found('BPMEXT', hdu[i]): bpmext=saltkey.get('BPMEXT', hdu[i]) else: bpmext=None #for each line in the data, determine the wavelength solution #for a given line in the image for j in range(len(hdu[i].data)): #find the wavelength solution for the data w_arr=findsol(xarr, soldict, j, caltype, timeobs, exptime, instrume, grating, grang, arang, filtername, slit, xbin, ybin, slitid, function, order ) #apply that wavelength solution to the data if w_arr is not None: try: hdu[i].data[j,:]=st.interpolate(nw_arr, w_arr, hdu[i].data[j,:], inttype, left=blank, right=blank) except Exception, e: hdu[i].data[j,:]=hdu[i].data[j,:]*0.0+blank msg='In row %i, solution cannot be found due to %s' % (i, e) #correct the variance frame if varext: try: hdu[varext].data[j,:]=st.interpolate(nw_arr, w_arr, hdu[varext].data[j,:], inttype, left=blank, right=blank) except Exception, e: msg='In row %i, solution cannot be found due to %s' % (i, e) #correct the BPM frame if bpmext: try: hdu[bpmext].data[j,:]=st.interpolate(nw_arr, w_arr, hdu[bpmext].data[j,:], inttype, left=blank, right=blank) except Exception, e: msg='In row %i, solution cannot be found due to %s' % (i, e)
def rectify(hdu, soldict, caltype='line', function='poly', order=3, inttype='interp', w1=None, w2=None, dw=None, nw=None, blank=0, pixscale=0.0, time_interp=False, conserve=False, nearest=False, clobber=True, log=None, verbose=True): """Read in an image and a set of wavlength solutions. Calculate the best wavelength solution for a given dataset and then apply that data set to the image return """ # set the basic values set_w1 = (w1 is None) set_w2 = (w2 is None) set_dw = (dw is None) set_nw = (nw is None) # set up the time of the observation dateobs = saltkey.get('DATE-OBS', hdu[0]) utctime = saltkey.get('TIME-OBS', hdu[0]) exptime = saltkey.get('EXPTIME', hdu[0]) instrume = saltkey.get('INSTRUME', hdu[0]).strip() grating = saltkey.get('GRATING', hdu[0]).strip() if caltype == 'line': grang = saltkey.get('GRTILT', hdu[0]) arang = saltkey.get('CAMANG', hdu[0]) else: grang = saltkey.get('GR-ANGLE', hdu[0]) arang = saltkey.get('AR-ANGLE', hdu[0]) filtername = saltkey.get('FILTER', hdu[0]).strip() slitname = saltkey.get('MASKID', hdu[0]) slit = st.getslitsize(slitname) xbin, ybin = saltkey.ccdbin(hdu[0]) timeobs = enterdatetime('%s %s' % (dateobs, utctime)) # check to see if there is more than one solution if caltype == 'line': if len(soldict) == 1: sol = soldict.keys()[0] slitid = None if not matchobservations( soldict[sol], instrume, grating, grang, arang, filtername, slitid): msg = 'Observations do not match setup for transformation but using the solution anyway' if log: log.warning(msg) for i in range(1, len(hdu)): if hdu[i].name == 'SCI': if log: log.message('Correcting extension %i' % i) istart = int(0.5 * len(hdu[i].data)) # open up the data # set up the xarr and initial wavlength solution xarr = np.arange(len(hdu[i].data[istart]), dtype='int64') # get the slitid try: slitid = saltkey.get('SLITNAME', hdu[i]) except: slitid = None # set up a wavelength solution try: w_arr = findsol(xarr, soldict, istart, caltype, nearest, timeobs, exptime, instrume, grating, grang, arang, filtername, slit, xbin, ybin, slitid, function, order) except SALTSpecError as e: if slitid: msg = 'SLITID %s: %s' % (slitid, e) if log: log.warning(msg) continue else: raise SALTSpecError(e) if w_arr is None: w_arr = findsol(xarr, soldict, istart, 'rss', nearest, timeobs, exptime, instrume, grating, grang, arang, filtername, slit, xbin, ybin, slitid, function, order) # set up the output x-axis if set_w1: w1 = w_arr.min() if set_w2: w2 = w_arr.max() if set_nw: nw = len(xarr) if set_dw: dw = float(w2 - w1) / nw nw_arr = createoutputxaxis(w1, w2, nw) # setup the VARIANCE and BPM frames if saltkey.found('VAREXT', hdu[i]): varext = saltkey.get('VAREXT', hdu[i]) else: varext = None # setup the BPM frames if saltkey.found('BPMEXT', hdu[i]): bpmext = saltkey.get('BPMEXT', hdu[i]) else: bpmext = None # for each line in the data, determine the wavelength solution # for a given line in the image for j in range(len(hdu[i].data)): # find the wavelength solution for the data w_arr = findsol(xarr, soldict, j, caltype, nearest, timeobs, exptime, instrume, grating, grang, arang, filtername, slit, xbin, ybin, slitid, function, order) # apply that wavelength solution to the data if w_arr is not None: try: hdu[i].data[ j, :] = st.interpolate( nw_arr, w_arr, hdu[i].data[ j, :], inttype, left=blank, right=blank) except Exception as e: hdu[i].data[j, :] = hdu[i].data[j, :] * 0.0 + blank msg = 'In row %i, solution cannot be found due to %s' % ( i, e) # correct the variance frame if varext: try: hdu[varext].data[ j, :] = st.interpolate( nw_arr, w_arr, hdu[varext].data[ j, :], inttype, left=blank, right=blank) except Exception as e: msg = 'In row %i, solution cannot be found due to %s' % ( i, e) # correct the BPM frame if bpmext: try: hdu[bpmext].data[ j, :] = st.interpolate( nw_arr, w_arr, hdu[bpmext].data[ j, :], inttype, left=blank, right=blank) except Exception as e: msg = 'In row %i, solution cannot be found due to %s' % ( i, e) else: hdu[i].data[j, :] = hdu[i].data[j, :] * 0.0 + blank if conserve: hdu[i].data = hdu[i].data / dw if varext: hdu[varext].data = hdu[varext].data / dw # Add WCS information saltkey.new('CTYPE1', 'LAMBDA', 'Coordinate Type', hdu[i]) saltkey.new('CTYPE2', 'PIXEL', 'Coordinate Type', hdu[i]) saltkey.new( 'CD1_1', dw, 'WCS: Wavelength Dispersion in angstrom/pixel', hdu[i]) saltkey.new('CD2_1', 0.0, 'WCS: ', hdu[i]) saltkey.new('CD1_2', 0.0, 'WCS: ', hdu[i]) saltkey.new('CD2_2', ybin * pixscale, 'WCS: ', hdu[i]) saltkey.new('CRPIX1', 0.0, 'WCS: X Reference pixel', hdu[i]) saltkey.new('CRPIX2', 0.0, 'WCS: Y Reference pixel', hdu[i]) saltkey.new('CRVAL1', w1, 'WCS: X Reference pixel', hdu[i]) saltkey.new('CRVAL2', 0.0, 'WCS: Y Reference pixel', hdu[i]) saltkey.new('CDELT1', 1.0, 'WCS: X pixel size', hdu[i]) saltkey.new('CDELT2', 1.0, 'WCS: Y pixel size', hdu[i]) saltkey.new('DC-FLAG', 0, 'Dispesion Corrected image', hdu[i]) return hdu
def extract(hdu, ext=1, method='normal', section=[], minsize=3.0, thresh=3.0, convert=True): """For a given image, extract a 1D spectra from the image and write the spectra to the output file """ ap_list = [] i = ext if hdu[i].name == 'SCI': # set up the data, variance, and bad pixel frames # first step is to find the region to extract data_arr = hdu[i].data try: var_arr = hdu[hdu[i].header['VAREXT']].data except: var_arr = None try: bpm_arr = hdu[hdu[i].header['BPMEXT']].data except: bpm_arr = None var_arr = None bpm_arr = None xarr = np.arange(len(data_arr[0])) # convert using the WCS information try: w0 = saltkey.get('CRVAL1', hdu[i]) dw = saltkey.get('CD1_1', hdu[i]) except Exception as e: msg = 'Error on Ext %i: %s' % (i, e) raise SALTSpecError(msg) warr = w0 + dw * xarr # convert from air to vacuum if convert: warr = Spectrum.air2vac(warr) # set up the sections in case of findobj if section is None: section = findobj.findObjects(data_arr, method='median', specaxis=1, minsize=minsize, thresh=thresh, niter=5) # extract all of the regions for sec in section: ap = apext.apext(warr, data_arr, ivar=var_arr) y1, y2 = sec ap.flatten(y1, y2) ap_list.append(ap) return ap_list
def make_mosaic(struct, gap, xshift, yshift, rotation, interp_type='linear', boundary='constant', constant=0, geotran=True, fill=False, cleanup=True, log=None, verbose=False): """Given a SALT image struct, combine each of the individual amplifiers and apply the geometric CCD transformations to the image """ # get the name of the file infile = saltkey.getimagename(struct[0], base=True) outpath = './' # identify instrument instrume, keyprep, keygain, keybias, keyxtalk, keyslot = \ saltkey.instrumid(struct) # how many amplifiers? nsciext = saltkey.get('NSCIEXT', struct[0]) nextend = saltkey.get('NEXTEND', struct[0]) nccds = saltkey.get('NCCDS', struct[0]) amplifiers = nccds * 2 if nextend > nsciext: varframe = True else: varframe = False # CCD geometry coefficients if (instrume == 'RSS' or instrume == 'PFIS'): xsh = [0., xshift[0], 0., xshift[1]] ysh = [0., yshift[0], 0., yshift[1]] rot = [0., rotation[0], 0., rotation[1]] elif instrume == 'SALTICAM': xsh = [0., xshift[0], 0.] ysh = [0., yshift[0], 0.] rot = [0., rotation[0], 0] # how many extensions? nextend = saltkey.get('NEXTEND', struct[0]) # CCD on-chip binning xbin, ybin = saltkey.ccdbin(struct[0]) # create temporary primary extension outstruct = [] outstruct.append(struct[0]) # define temporary FITS file store tiled CCDs tilefile = saltio.tmpfile(outpath) tilefile += 'tile.fits' if varframe: tilehdu = [None] * (3 * int(nsciext / 2) + 1) else: tilehdu = [None] * int(nsciext / 2 + 1) tilehdu[0] = fits.PrimaryHDU() #tilehdu[0].header = struct[0].header if log: log.message('', with_stdout=verbose) # iterate over amplifiers, stich them to produce file of CCD images for i in range(int(nsciext / 2)): hdu = i * 2 + 1 # amplifier = hdu%amplifiers # if (amplifier == 0): amplifier = amplifiers # read DATASEC keywords datasec1 = saltkey.get('DATASEC', struct[hdu]) datasec2 = saltkey.get('DATASEC', struct[hdu + 1]) xdsec1, ydsec1 = saltstring.secsplit(datasec1) xdsec2, ydsec2 = saltstring.secsplit(datasec2) # read images imdata1 = saltio.readimage(struct, hdu) imdata2 = saltio.readimage(struct, hdu + 1) # tile 2n amplifiers to yield n CCD images outdata = numpy.zeros((ydsec1[1] + abs(ysh[i + 1] / ybin), xdsec1[1] + xdsec2[1] + abs(xsh[i + 1] / xbin)), numpy.float32) # set up the variance frame if varframe: vardata = outdata.copy() vdata1 = saltio.readimage(struct, struct[hdu].header['VAREXT']) vdata2 = saltio.readimage(struct, struct[hdu + 1].header['VAREXT']) bpmdata = outdata.copy() bdata1 = saltio.readimage(struct, struct[hdu].header['BPMEXT']) bdata2 = saltio.readimage(struct, struct[hdu + 1].header['BPMEXT']) x1 = xdsec1[0] - 1 if x1 != 0: msg = 'The data in %s have not been trimmed prior to mosaicking.' \ % infile log.error(msg) if xsh[i + 1] < 0: x1 += abs(xsh[i + 1] / xbin) x2 = x1 + xdsec1[1] y1 = ydsec1[0] - 1 if ysh[i + 1] < 0: y1 += abs(ysh[i + 1] / ybin) y2 = y1 + ydsec1[1] outdata[y1:y2, x1:x2] =\ imdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] if varframe: vardata[y1:y2, x1:x2] =\ vdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] bpmdata[y1:y2, x1:x2] =\ bdata1[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] x1 = x2 x2 = x1 + xdsec2[1] y1 = ydsec2[0] - 1 if ysh[i + 1] < 0: y1 += abs(ysh[i + 1] / ybin) y2 = y1 + ydsec2[1] outdata[y1:y2, x1:x2] =\ imdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] if varframe: vardata[y1:y2, x1:x2] =\ vdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] bpmdata[y1:y2, x1:x2] =\ bdata2[ydsec1[0] - 1:ydsec1[1], xdsec1[0] - 1:xdsec1[1]] # size of new image naxis1 = str(xdsec1[1] + xdsec2[1]) naxis2 = str(ydsec1[1]) # add image and keywords to HDU list tilehdu[i + 1] = fits.ImageHDU(outdata) tilehdu[i + 1].header = struct[hdu].header #tilehdu[ # i + 1].header['DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' if varframe: vext = i + 1 + int(nsciext / 2.) tilehdu[vext] = fits.ImageHDU(vardata) #tilehdu[vext].header = struct[struct[hdu].header['VAREXT']].header #tilehdu[vext].header[ # 'DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' bext = i + 1 + 2 * int(nsciext / 2.) tilehdu[bext] = fits.ImageHDU(bpmdata) #tilehdu[bext].header = struct[struct[hdu].header['BPMEXT']].header #tilehdu[bext].header[ # 'DATASEC'] = '[1:' + naxis1 + ',1:' + naxis2 + ']' # image tile log message #1 if log: message = os.path.basename(infile) + '[' + str(hdu) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + '] --> ' message += os.path.basename(tilefile) + '[' + str(i + 1) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + ']' log.message(message, with_stdout=verbose, with_header=False) message = os.path.basename(infile) + '[' + str(hdu + 1) + '][' message += str(xdsec1[0]) + ':' + str(xdsec1[1]) + ',' message += str(ydsec1[0]) + ':' + str(ydsec1[1]) + '] --> ' message += os.path.basename(tilefile) + '[' + str(i + 1) + '][' message += str(xdsec1[1] + 1) + ':' + \ str(xdsec1[1] + xdsec2[1]) + ',' message += str(ydsec2[0]) + ':' + str(ydsec2[1]) + ']' log.message(message, with_stdout=verbose, with_header=False) # write temporary file of tiled CCDs hdulist = fits.HDUList(tilehdu) hdulist.writeto(tilefile) # iterate over CCDs, transform and rotate images yrot = [None] * 4 xrot = [None] * 4 tranfile = [' '] tranhdu = [0] if varframe: tranfile = [''] * (3 * int(nsciext / 2) + 1) tranhdu = [0] * (3 * int(nsciext / 2) + 1) else: tranfile = [''] * int(nsciext / 2 + 1) tranhdu = [0] * int(nsciext / 2 + 1) # this is hardwired for SALT where the second CCD is considered the # fiducial for hdu in range(1, int(nsciext / 2 + 1)): tranfile[hdu] = saltio.tmpfile(outpath) tranfile[hdu] += 'tran.fits' if varframe: tranfile[hdu + nccds] = saltio.tmpfile(outpath) + 'tran.fits' tranfile[hdu + 2 * nccds] = saltio.tmpfile(outpath) + 'tran.fits' ccd = hdu % nccds if (ccd == 0): ccd = nccds # correct rotation for CCD binning yrot[ccd] = rot[ccd] * ybin / xbin xrot[ccd] = rot[ccd] * xbin / ybin dxshift = xbin * int(float(int(gap) / xbin) + 0.5) - gap # transformation using geotran IRAF task # if (ccd == 1): if (ccd != 2): if geotran: message = '\nSALTMOSAIC -- geotran ' + tilefile + \ '[' + str(ccd) + '] ' + tranfile[hdu] message += ' \"\" \"\" xshift=' + \ str((xsh[ccd] + (2 - ccd) * dxshift) / xbin) + ' ' message += 'yshift=' + \ str(ysh[ccd] / ybin) + ' xrotation=' + str(xrot[ccd]) + ' ' message += 'yrotation=' + \ str(yrot[ccd]) + ' xmag=1 ymag=1 xmin=\'INDEF\'' message += 'xmax=\'INDEF\' ymin=\'INDEF\' ymax=\'INDEF\' ' message += 'ncols=\'INDEF\' ' message += 'nlines=\'INDEF\' verbose=\'no\' ' message += 'fluxconserve=\'yes\' nxblock=2048 ' message += 'nyblock=2048 interpolant=\'' + \ interp_type + '\' boundary=\'constant\' constant=0' log.message(message, with_stdout=verbose) yd, xd = tilehdu[ccd].data.shape ncols = 'INDEF' # ncols=xd+abs(xsh[ccd]/xbin) nlines = 'INDEF' # nlines=yd+abs(ysh[ccd]/ybin) geo_xshift = xsh[ccd] + (2 - ccd) * dxshift / xbin geo_yshift = ysh[ccd] / ybin iraf.images.immatch.geotran(tilefile + "[" + str(ccd) + "]", tranfile[hdu], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) if varframe: var_infile = tilefile + "[" + str(ccd + nccds) + "]" iraf.images.immatch.geotran(var_infile, tranfile[hdu + nccds], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) var2_infile = tilefile + "[" + str(ccd + 2 * nccds) + "]" iraf.images.immatch.geotran(var2_infile, tranfile[hdu + 2 * nccds], "", "", xshift=geo_xshift, yshift=geo_yshift, xrotation=xrot[ccd], yrotation=yrot[ccd], xmag=1, ymag=1, xmin='INDEF', xmax='INDEF', ymin='INDEF', ymax='INDEF', ncols=ncols, nlines=nlines, verbose='no', fluxconserve='yes', nxblock=2048, nyblock=2048, interpolant="linear", boundary="constant", constant=0) # open the file and copy the data to tranhdu tstruct = fits.open(tranfile[hdu]) tranhdu[hdu] = tstruct[0].data tstruct.close() if varframe: tranhdu[ hdu + nccds] = fits.open( tranfile[ hdu + nccds])[0].data tranhdu[ hdu + 2 * nccds] = fits.open( tranfile[ hdu + 2 * nccds])[0].data else: log.message( "Transform CCD #%i using dx=%s, dy=%s, rot=%s" % (ccd, xsh[ccd] / 2.0, ysh[ccd] / 2.0, xrot[ccd]), with_stdout=verbose, with_header=False) tranhdu[hdu] = geometric_transform( tilehdu[ccd].data, tran_func, prefilter=False, order=1, extra_arguments=( xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) tstruct = fits.PrimaryHDU(tranhdu[hdu]) tstruct.writeto(tranfile[hdu]) if varframe: tranhdu[hdu + nccds] = geometric_transform( tilehdu[hdu + 3].data, tran_func, prefilter=False, order=1, extra_arguments=( xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) tranhdu[hdu + 2 * nccds] = geometric_transform( tilehdu[hdu + 6].data, tran_func, prefilter=False, order=1, extra_arguments=( xsh[ccd] / 2, ysh[ccd] / 2, 1, 1, xrot[ccd], yrot[ccd])) else: log.message( "Transform CCD #%i using dx=%s, dy=%s, rot=%s" % (ccd, 0, 0, 0), with_stdout=verbose, with_header=False) tranhdu[hdu] = tilehdu[ccd].data if varframe: tranhdu[hdu + nccds] = tilehdu[ccd + nccds].data tranhdu[hdu + 2 * nccds] = tilehdu[ccd + 2 * nccds].data # open outfile if varframe: outlist = 4 * [None] else: outlist = 2 * [None] #outlist[0] = struct[0].copy() outlist[0] = fits.PrimaryHDU() outlist[0].header = struct[0].header naxis1 = int(gap / xbin * (nccds - 1)) naxis2 = 0 for i in range(1, nccds + 1): yw, xw = tranhdu[i].shape naxis1 += xw + int(abs(xsh[ccd] / xbin)) + 1 naxis2 = max(naxis2, yw) outdata = numpy.zeros((naxis2, naxis1), numpy.float32) outdata.shape = naxis2, naxis1 if varframe: vardata = outdata * 0 bpmdata = outdata * 0 + 1 # iterate over CCDs, stich them to produce a full image hdu = 0 totxshift = 0 for hdu in range(1, nccds + 1): # read DATASEC keywords ydsec, xdsec = tranhdu[hdu].shape # define size and shape of final image # tile CCDs to yield mosaiced image x1 = int((hdu - 1) * (xdsec + gap / xbin)) + int(totxshift) x2 = xdsec + x1 y1 = int(0) y2 = int(ydsec) outdata[y1:y2, x1:x2] = tranhdu[hdu] totxshift += int(abs(xsh[hdu] / xbin)) + 1 if varframe: vardata[y1:y2, x1:x2] = tranhdu[hdu + nccds] bpmdata[y1:y2, x1:x2] = tranhdu[hdu + 2 * nccds] # make sure to cover up all the gaps include bad areas if varframe: baddata = (outdata == 0) baddata = nd.maximum_filter(baddata, size=3) bpmdata[baddata] = 1 # fill in the gaps if requested if fill: if varframe: outdata = fill_gaps(outdata, 0) else: outdata = fill_gaps(outdata, 0) # add to the file outlist[1] = fits.ImageHDU(outdata) if varframe: outlist[2] = fits.ImageHDU(vardata,name='VAR') outlist[3] = fits.ImageHDU(bpmdata,name='BPM') # create the image structure outstruct = fits.HDUList(outlist) # update the head informaation # housekeeping keywords saltkey.put('NEXTEND', 2, outstruct[0]) saltkey.new('EXTNAME', 'SCI', 'Extension name', outstruct[1]) saltkey.new('EXTVER', 1, 'Extension number', outstruct[1]) if varframe: saltkey.new('VAREXT', 2, 'Variance frame extension', outstruct[1]) saltkey.new('BPMEXT', 3, 'BPM Extension', outstruct[1]) try: saltkey.copy(struct[1], outstruct[1], 'CCDSUM') except: pass # Add keywords associated with geometry saltkey.new('SGEOMGAP', gap, 'SALT Chip Gap', outstruct[0]) c1str = '{:3.2f} {:3.2f} {:3.4f}'.format(xshift[0], yshift[0], rotation[0]) saltkey.new('SGEOM1', c1str, 'SALT Chip 1 Transform', outstruct[0]) c2str = '{:3.2f} {:3.2f} {:3.4f}'.format(xshift[1], yshift[1], rotation[1]) saltkey.new('SGEOM2', c2str, 'SALT Chip 2 Transform', outstruct[0]) # WCS keywords saltkey.new('CRPIX1', 0, 'WCS: X reference pixel', outstruct[1]) saltkey.new('CRPIX2', 0, 'WCS: Y reference pixel', outstruct[1]) saltkey.new( 'CRVAL1', float(xbin), 'WCS: X reference coordinate value', outstruct[1]) saltkey.new( 'CRVAL2', float(ybin), 'WCS: Y reference coordinate value', outstruct[1]) saltkey.new('CDELT1', float(xbin), 'WCS: X pixel size', outstruct[1]) saltkey.new('CDELT2', float(ybin), 'WCS: Y pixel size', outstruct[1]) saltkey.new('CTYPE1', 'pixel', 'X type', outstruct[1]) saltkey.new('CTYPE2', 'pixel', 'Y type', outstruct[1]) # cleanup temporary files if cleanup: for tfile in tranfile: if os.path.isfile(tfile): saltio.delete(tfile) if os.path.isfile(tilefile): status = saltio.delete(tilefile) # return the file return outstruct
def bias(struct,subover=True,trim=True, subbias=False, bstruct=None, median=False, function='polynomial',order=3,rej_lo=3,rej_hi=3,niter=10, plotover=False, log=None, verbose=True): """Bias subtracts the bias levels from a frame. It will fit and subtract the overscan region, trim the images, and subtract a master bias if required. struct--image structure subover--subtract the overscan region trim--trim the image subbias--subtract master bias bstruct--master bias image structure median--use the median instead of mean in image statistics function--form to fit to the overscan region order--order for the function rej_lo--sigma of low points to reject in the fit rej_hi--sigma of high points to reject in the fit niter--number of iterations log--saltio log for recording information verbose--whether to print to stdout """ infile=saltkey.getimagename(struct[0]) # how many extensions? nsciext = saltkey.get('NSCIEXT',struct[0]) nextend = saltkey.get('NEXTEND',struct[0]) nccd = saltkey.get('NCCDS',struct[0]) # how many amplifiers?--this is hard wired amplifiers = 2 * nccd #log the process if subover and log: message = '%28s %7s %5s %4s %6s' % \ ('HDU','Overscan','Order','RMS','Niter') log.message('\n --------------------------------------------------', with_header=False, with_stdout=verbose) log.message(message, with_header=False, with_stdout=verbose) log.message(' --------------------------------------------------', with_header=False, with_stdout=verbose) if (plotover): plt.figure(1) plt.axes([0.1,0.1,0.8,0.8]) plt.xlabel('CCD Column') plt.ylabel('Pixel Counts (e-)') plt.ion() #loop through the extensions and subtract the bias for i in range(1,nsciext+1): if struct[i].name=='SCI': #get the bias section biassec = saltkey.get('BIASSEC',struct[i]) y1,y2,x1,x2 = saltio.getSection(biassec, iraf_format=True) #get the data section datasec = saltkey.get('DATASEC',struct[i]) dy1,dy2, dx1, dx2 = saltio.getSection(datasec, iraf_format=True) #setup the overscan region if subover: yarr=np.arange(y1,y2, dtype=float) data=struct[i].data odata=struct[i].data[y1:y2,x1:x2] if median: odata=np.median((struct[i].data[y1:y2,x1:x2]),axis=1) olevel=np.median((struct[i].data[y1:y2,x1:x2])) saltkey.new('OVERSCAN','%f' % (olevel),'Overscan median value', struct[i]) else: odata=np.mean((struct[i].data[y1:y2,x1:x2]),axis=1) olevel=np.mean((struct[i].data[y1:y2,x1:x2])) saltkey.new('OVERSCAN','%f' % (olevel),'Overscan mean value', struct[i]) #fit the overscan region ifit=saltfit.interfit(yarr, odata, function=function, \ order=order, thresh=rej_hi, niter=niter) try: ifit.interfit() coeffs=ifit.coef ofit=ifit(yarr) omean, omed, osigma=saltstat.iterstat((odata-ofit), sig=3, niter=5) except ValueError: #catch the error if it is a zero array ofit=np.array(yarr)*0.0 osigma=0.0 except TypeError: #catch the error if it is a zero array ofit=np.array(yarr)*0.0 osigma=0.0 #if it hasn't been already, convert image to #double format struct[i].data = 1.0 * struct[i].data try: struct[i].header.remove('BZERO') struct[i].header.remove('BSCALE') except: pass #subtract the overscan region for j in range(len(struct[i].data[0])): struct[i].data[y1:y2,j] -= ofit #report the information if log: message = '%25s[%1d] %8.2f %3d %7.2f %3d' % \ (infile, i, olevel, order, osigma, niter) log.message(message, with_stdout=verbose, with_header=False) #add the statistics to the image header saltkey.new('OVERRMS','%f' % (osigma),'Overscan RMS value', struct[i]) #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu=saltkey.get('VAREXT', struct[i]) try: vdata=struct[vhdu].data #The bias level should not be included in the noise from the signal for j in range(len(struct[i].data[0])): vdata[y1:y2,j] -= ofit #add a bit to make sure that the minimum error is the rednoise rdnoise= saltkey.get('RDNOISE',struct[i]) vdata[vdata<rdnoise**2]=rdnoise**2 struct[vhdu].data=vdata+osigma**2 except Exception, e: msg='Cannot update the variance frame in %s[%i] because %s' % (infile, vhdu, e) raise SaltError(msg) #plot the overscan region if plotover: plt.plot(yarr, odata) plt.plot(yarr, ofit) #trim the data and update the headers if trim: struct[i].data=struct[i].data[dy1:dy2,dx1:dx2] datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']' saltkey.put('DATASEC',datasec,struct[i]) #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu=saltkey.get('VAREXT', struct[i]) struct[vhdu].data=struct[vhdu].data[dy1:dy2,dx1:dx2] datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']' saltkey.put('DATASEC',datasec,struct[vhdu]) #update the BPM frame if saltkey.found('BPMEXT', struct[i]): bhdu=saltkey.get('BPMEXT', struct[i]) struct[bhdu].data=struct[bhdu].data[dy1:dy2,dx1:dx2] datasec = '[1:'+str(dx2-dx1)+',1:'+str(dy2-dy1)+']' saltkey.put('DATASEC',datasec,struct[bhdu]) #subtract the master bias if necessary if subbias and bstruct: struct[i].data -= bstruct[i].data #update the variance frame if saltkey.found('VAREXT', struct[i]): vhdu=saltkey.get('VAREXT', struct[i]) try: vdata=struct[vhdu].data struct[vhdu].data=vdata+bstruct[vhdu].data except Exception, e: msg='Cannot update the variance frame in %s[%i] because %s' % (infile, vhdu, e) raise SaltError(msg)
def specslit(image, outimage, outpref, exttype='auto', slitfile='', outputslitfile='', regprefix='', sections=3, width=25, sigma=2.2, thres=6, order=3, padding=5, yoffset=0, inter=False, clobber=True, logfile='salt.log', verbose=True): with logging(logfile, debug) as log: # check all the input and make sure that all the input needed is provided # by the user # read the image or image list and check if each in the list exist infiles = saltio.argunpack('Input', image) # unpack the outfiles outfiles = saltio.listparse('Outimages', outimage, outpref, infiles, '') # from the extraction type, check whether the input file is specified. # if the slitfile parameter is specified then use the slit files for # the extraction. if the extraction type is auto then use image for the # detection and the slit extraction if exttype == 'rsmt' or exttype == 'fits' or exttype == 'ascii' or exttype == 'ds9': slitfiles = saltio.argunpack('Slitfile', slitfile) if len(slitfiles) == 1: slitfiles = slitfiles * len(infiles) saltio.comparelists(infiles, slitfiles, 'image', 'slitfile') elif exttype == 'auto': slitfiles = infiles log.message( 'Extraction type is AUTO. Slit detection will be done from image' ) # read in if an optional ascii file is requested if len(outputslitfile) > 0: outslitfiles = saltio.argunpack('Outslitfiles', outputslitfile) saltio.comparelists(infiles, outslitfiles, 'image', 'outputslitfile') else: outslitfiles = [''] * len(infiles) # check if the width and sigma parameters were specified. # default is 25 and 2.2 if width < 10.: msg = 'The width parameter needs be a value larger than 10' raise SALTSpecError(msg) if sigma < 0.0: msg = 'Sigma must be greater than zero' raise SaltSpecError(msg) # check the treshold parameter. this needs to be specified by the user if thres <= 0.0: msg = 'Threshold must be greater than zero' raise SaltSpecError(msg) # check to make sure that the sections are greater than the order if sections <= order: msg = 'Number of sections must be greater than the order for the spline fit' raise SaltSpecError(msg) # run through each of the images and extract the slits for img, oimg, sfile, oslit in zip(infiles, outfiles, slitfiles, outslitfiles): log.message('Proccessing image %s' % img) # open the image struct = saltio.openfits(img) ylen, xlen = struct[1].data.shape xbin, ybin = saltkey.ccdbin(struct[0], img) # setup the VARIANCE and BPM frames if saltkey.found('VAREXT', struct[1]): varext = saltkey.get('VAREXT', struct[1]) varlist = [] else: varext = None # setup the BPM frames if saltkey.found('BPMEXT', struct[1]): bpmext = saltkey.get('BPMEXT', struct[1]) bpmlist = [] else: bpmext = None # open the slit definition file or identify the slits in the image slitmask = None ycheck = False if exttype == 'rsmt': log.message('Using slits from %s' % sfile) if yoffset is None: yoffset = 0 ycheck = True slitmask = mt.read_slitmask_from_xml(sfile) xpos = -0.3066 ypos = 0.0117 cx = int(xlen / 2.0) cy = int(ylen / 2.0) + ypos / 0.015 / ybin + yoffset order, slit_positions = mt.convert_slits_from_mask( slitmask, order=1, xbin=xbin, ybin=ybin, pix_scale=0.1267, cx=cx, cy=cy) sections = 1 elif exttype == 'fits': log.message('Using slits from %s' % sfile) order, slit_positions = read_slits_from_fits(sfile) elif exttype == 'ascii': log.message('Using slits from %s' % sfile) order, slit_positions = mt.read_slits_from_ascii(sfile) elif exttype == 'ds9': log.message('Using slits from %s' % sfile) order, slit_positions, slitmask = mt.read_slits_from_ds9( sfile, order=order) slitmask = None sections = 1 elif exttype == 'auto': log.message('Identifying slits in %s' % img) # identify the slits in the image order, slit_positions = identify_slits(struct[1].data, order, sections, width, sigma, thres) # write out the slit identifications if ofile has been supplied if oslit: log.message('Writing slit positions to %s' % oslit) mt.write_outputslitfile(slit_positions, oslit, order) if ycheck: slit_positions, dy = check_ypos(slit_positions, struct[1].data) log.message('Using an offset of {}'.format(dy)) # extract the slits spline_x = mt.divide_image(struct[1].data, sections) spline_x = 0.5 * (np.array(spline_x[:-1]) + np.array(spline_x[1:])) extracted_spectra, spline_positions = mt.extract_slits( slit_positions, spline_x, struct[1].data, order=order, padding=padding) if varext: extracted_var, var_positions = mt.extract_slits( slit_positions, spline_x, struct[varext].data, order=order, padding=padding) if bpmext: extracted_bpm, bpm_positions = mt.extract_slits( slit_positions, spline_x, struct[bpmext].data, order=order, padding=padding) # write out the data to the new array # create the new file hdulist = fits.HDUList([struct[0]]) # log the extracted spectra if needed log.message('', with_stdout=verbose) # setup output ds9 file if regprefix: regout = open( regprefix + os.path.basename(img).strip('.fits') + '.reg', 'w') regout.write('# Region file format: DS9 version 4.1\n') regout.write('# Filename: %s\n' % img) regout.write( 'global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\nphysical\n' ) # add each imglist = [] nslits = len(spline_positions) for i in range(nslits): y1 = spline_positions[i][0].min() y2 = spline_positions[i][1].max() msg = 'Extracted Spectra %i between %i to %i' % (i + 1, y1, y2) # log.message(msg, with_header=False, with_stdout=verbose) sdu = fits.ImageHDU(extracted_spectra[i], header=struct[1].header) if varext: vdu = fits.ImageHDU(extracted_var[i], header=struct[varext].header) sdu.header['VAREXT'] = i + nslits + 1 varlist.append(vdu) if bpmext: bdu = fits.ImageHDU(extracted_bpm[i], header=struct[bpmext].header) sdu.header['BPMEXT'] = i + 2 * nslits + 1 bpmlist.append(bdu) imglist.append(sdu) # add in some additional keywords imglist[i].header['MINY'] = (y1, 'Lower Y value in original image') imglist[i].header['MAXY'] = (y2, 'Upper Y value in original image') if regprefix: xsize = struct[1].data.shape[1] xsize = int(0.5 * xsize) rtext = '' if slitmask: # rtext='%s, %8.7f, %8.7f, %3.2f' % (slitmask.slitlets.data[i]['name'], slitmask.slitlets.data[i]['targ_ra'], slitmask.slitlets.data[i]['targ_dec'], slitmask.slitlets.data[i]['slit_width']) pass regout.write('box(%i,%i, %i, %i) #text={%s}\n' % (xsize, 0.5 * (y1 + y2), 2 * xsize, y2 - y1, rtext)) # add slit information if slitmask: imglist[i].header['SLITNAME'] = ( slitmask.slitlets.data[i]['name'], 'Slit Name') imglist[i].header['SLIT_RA'] = ( slitmask.slitlets.data[i]['targ_ra'], 'Slit RA') imglist[i].header['SLIT_DEC'] = ( slitmask.slitlets.data[i]['targ_dec'], 'Slit DEC') imglist[i].header['SLIT'] = ( slitmask.slitlets.data[i]['slit_width'], 'Slit Width') # add to the hdulist hdulist += imglist if varext: hdulist += varlist if bpmext: hdulist += bpmlist # write the slit positions to the header # create the binary table HDU that contains the split positions tbhdu = mt.slits_HDUtable(slit_positions, order) bintable_hdr = tbhdu.header # add the extname parameter to the extension tbhdu.header['EXTNAME'] = 'BINTABLE' # add the extname parameter to the extension hdulist[0].header['SLITEXT'] = len(hdulist) hdulist.append(tbhdu) # add addition header information about the mask if slitmask: hdulist[0].header['MASKNAME'] = (slitmask.mask_name, 'SlitMask Name') hdulist[0].header['MASK_RA'] = (slitmask.center_ra, 'SlitMask RA') hdulist[0].header['MASK_DEC'] = (slitmask.center_dec, 'SlitMask DEC') hdulist[0].header['MASK_PA'] = (slitmask.position_angle, 'SlitMask Position Angle') # write out the image saltio.writefits(hdulist, oimg, clobber)