def read_seeds_file(filename, has_keys): seeds = [] with open(filename, 'r') as seed_file: lines = seed_file.readlines() for line in lines: try: if has_keys: seed, cache_key = line.split(' ') else: seed = line seed = int(seed) seeds.append(seed) except Exception: log.error( 'Could not read seed value from the file! File potentially corrupted' ) log.exception('Exception when reading seeds file') return seeds
def _run(self): """ Main loop of the actor worker (rollout worker). Process tasks (mainly ROLLOUT_STEP) until we get the termination signal, which usually means end of training. Currently there is no mechanism to restart dead workers if something bad happens during training. We can only retry on the initial reset(). This is definitely something to work on. """ log.info('Initializing vector env runner %d...', self.worker_idx) # workers should ignore Ctrl+C because the termination is handled in the event loop by a special msg signal.signal(signal.SIGINT, signal.SIG_IGN) if self.cfg.actor_worker_gpus: set_gpus_for_process( self.worker_idx, num_gpus_per_process=1, process_type='actor', gpu_mask=self.cfg.actor_worker_gpus, ) torch.multiprocessing.set_sharing_strategy('file_system') timing = Timing() last_report = time.time() with torch.no_grad(): while not self.terminate: try: try: with timing.add_time('waiting'), timing.timeit( 'wait_actor'): tasks = self.task_queue.get_many(timeout=0.1) except Empty: tasks = [] for task in tasks: task_type, data = task if task_type == TaskType.INIT: self._init() continue if task_type == TaskType.TERMINATE: self._terminate() break # handling actual workload if task_type == TaskType.ROLLOUT_STEP: if 'work' not in timing: timing.waiting = 0 # measure waiting only after real work has started with timing.add_time('work'), timing.timeit( 'one_step'): self._advance_rollouts(data, timing) elif task_type == TaskType.RESET: with timing.add_time('reset'): self._handle_reset() elif task_type == TaskType.PBT: self._process_pbt_task(data) elif task_type == TaskType.UPDATE_ENV_STEPS: for env in self.env_runners: env.update_env_steps(data) if time.time() - last_report > 5.0 and 'one_step' in timing: timing_stats = dict(wait_actor=timing.wait_actor, step_actor=timing.one_step) memory_mb = memory_consumption_mb() stats = dict(memory_actor=memory_mb) safe_put(self.report_queue, dict(timing=timing_stats, stats=stats), queue_name='report') last_report = time.time() except RuntimeError as exc: log.warning( 'Error while processing data w: %d, exception: %s', self.worker_idx, exc) log.warning('Terminate process...') self.terminate = True safe_put(self.report_queue, dict(critical_error=self.worker_idx), queue_name='report') except KeyboardInterrupt: self.terminate = True except: log.exception('Unknown exception in rollout worker') self.terminate = True if self.worker_idx <= 1: time.sleep(0.1) log.info( 'Env runner %d, CPU aff. %r, rollouts %d: timing %s', self.worker_idx, psutil.Process().cpu_affinity(), self.num_complete_rollouts, timing, )
def sample(self, proc_idx): # workers should ignore Ctrl+C because the termination is handled in the event loop by a special msg signal.signal(signal.SIGINT, signal.SIG_IGN) if self.cfg.sampler_worker_gpus: set_gpus_for_process( proc_idx, num_gpus_per_process=1, process_type='sampler_proc', gpu_mask=self.cfg.sampler_worker_gpus, ) timing = Timing() from threadpoolctl import threadpool_limits with threadpool_limits(limits=1, user_api=None): if self.cfg.set_workers_cpu_affinity: set_process_cpu_affinity(proc_idx, self.cfg.num_workers) initial_cpu_affinity = psutil.Process().cpu_affinity( ) if platform != 'darwin' else None psutil.Process().nice(10) with timing.timeit('env_init'): envs = [] env_key = ['env' for _ in range(self.cfg.num_envs_per_worker)] for env_idx in range(self.cfg.num_envs_per_worker): global_env_id = proc_idx * self.cfg.num_envs_per_worker + env_idx env_config = AttrDict(worker_index=proc_idx, vector_index=env_idx, env_id=global_env_id) env = make_env_func(cfg=self.cfg, env_config=env_config) log.debug( 'CPU affinity after create_env: %r', psutil.Process().cpu_affinity() if platform != 'darwin' else 'MacOS - None') env.seed(global_env_id) envs.append(env) # this is to track the performance for individual DMLab levels if hasattr(env.unwrapped, 'level_name'): env_key[env_idx] = env.unwrapped.level_name episode_length = [0 for _ in envs] episode_lengths = [deque([], maxlen=20) for _ in envs] # sample a lot of random actions once, otherwise it is pretty slow in Python total_random_actions = 500 actions = [[ env.action_space.sample() for _ in range(env.num_agents) ] for _ in range(total_random_actions)] action_i = 0 try: with timing.timeit('first_reset'): for env_idx, env in enumerate(envs): env.reset() log.info('Process %d finished resetting %d/%d envs', proc_idx, env_idx + 1, len(envs)) self.report_queue.put( dict(proc_idx=proc_idx, finished_reset=True)) self.start_event.wait() with timing.timeit('work'): last_report = last_report_frames = total_env_frames = 0 while not self.terminate.value and total_env_frames < self.cfg.sample_env_frames_per_worker: for env_idx, env in enumerate(envs): with timing.add_time(f'{env_key[env_idx]}.step'): obs, rewards, dones, infos = env.step( actions[action_i]) action_i = (action_i + 1) % total_random_actions num_frames = sum( [info.get('num_frames', 1) for info in infos]) total_env_frames += num_frames episode_length[env_idx] += num_frames if all(dones): episode_lengths[env_idx].append( episode_length[env_idx] / env.num_agents) episode_length[env_idx] = 0 with timing.add_time('report'): now = time.time() if now - last_report > self.report_every_sec: last_report = now frames_since_last_report = total_env_frames - last_report_frames last_report_frames = total_env_frames self.report_queue.put( dict(proc_idx=proc_idx, env_frames=frames_since_last_report)) if proc_idx == 0: log.debug('Memory usage: %.4f Mb', memory_consumption_mb()) # Extra check to make sure cpu affinity is preserved throughout the execution. # I observed weird effect when some environments tried to alter affinity of the current process, leading # to decreased performance. # This can be caused by some interactions between deep learning libs, OpenCV, MKL, OpenMP, etc. # At least user should know about it if this is happening. cpu_affinity = psutil.Process().cpu_affinity( ) if platform != 'darwin' else None assert initial_cpu_affinity == cpu_affinity, \ f'Worker CPU affinity was changed from {initial_cpu_affinity} to {cpu_affinity}!' \ f'This can significantly affect performance!' except: log.exception('Unknown exception') log.error('Unknown exception in worker %d, terminating...', proc_idx) self.report_queue.put(dict(proc_idx=proc_idx, crash=True)) time.sleep(proc_idx * 0.01 + 0.01) log.info('Process %d finished sampling. Timing: %s', proc_idx, timing) for env_idx, env in enumerate(envs): if len(episode_lengths[env_idx]) > 0: log.warning('Level %s avg episode len %d', env_key[env_idx], np.mean(episode_lengths[env_idx])) for env in envs: env.close()
def run(self): """ This function contains the main loop of the algorithm, as well as initialization/cleanup code. :return: ExperimentStatus (SUCCESS, FAILURE, INTERRUPTED). Useful in testing. """ status = ExperimentStatus.SUCCESS if os.path.isfile(done_filename(self.cfg)): log.warning( 'Training already finished! Remove "done" file to continue training' ) return status self.init_workers() self.init_pbt() self.finish_initialization() log.info('Collecting experience...') timing = Timing() with timing.timeit('experience'): # noinspection PyBroadException try: while not self._should_end_training(): try: reports = self.report_queue.get_many(timeout=0.1) for report in reports: self.process_report(report) except Empty: pass if time.time() - self.last_report > self.report_interval: self.report() now = time.time() self.total_train_seconds += now - self.last_report self.last_report = now self.update_env_steps_actor() self.pbt.update(self.env_steps, self.policy_avg_stats) except Exception: log.exception('Exception in driver loop') status = ExperimentStatus.FAILURE except KeyboardInterrupt: log.warning( 'Keyboard interrupt detected in driver loop, exiting...') status = ExperimentStatus.INTERRUPTED for learner in self.learner_workers.values(): # timeout is needed here because some environments may crash on KeyboardInterrupt (e.g. VizDoom) # Therefore the learner train loop will never do another iteration and will never save the model. # This is not an issue with normal exit, e.g. due to desired number of frames reached. learner.save_model(timeout=5.0) all_workers = self.actor_workers for workers in self.policy_workers.values(): all_workers.extend(workers) all_workers.extend(self.learner_workers.values()) child_processes = list_child_processes() time.sleep(0.1) log.debug('Closing workers...') for i, w in enumerate(all_workers): w.close() time.sleep(0.01) for i, w in enumerate(all_workers): w.join() log.debug('Workers joined!') finish_wandb(self.cfg) # VizDoom processes often refuse to die for an unidentified reason, so we're force killing them with a hack kill_processes(child_processes) fps = self.total_env_steps_since_resume / timing.experience log.info('Collected %r, FPS: %.1f', self.env_steps, fps) log.info('Timing: %s', timing) if self._should_end_training(): with open(done_filename(self.cfg), 'w') as fobj: fobj.write(f'{self.env_steps}') time.sleep(0.5) log.info('Done!') return status
def _run(self): # workers should ignore Ctrl+C because the termination is handled in the event loop by a special msg signal.signal(signal.SIGINT, signal.SIG_IGN) psutil.Process().nice(min(self.cfg.default_niceness + 2, 20)) cuda_envvars_for_policy(self.policy_id, 'inference') torch.multiprocessing.set_sharing_strategy('file_system') timing = Timing() with timing.timeit('init'): # initialize the Torch modules log.info('Initializing model on the policy worker %d-%d...', self.policy_id, self.worker_idx) log.info( f'POLICY worker {self.policy_id}-{self.worker_idx}\tpid {os.getpid()}\tparent {os.getppid()}' ) torch.set_num_threads(1) if self.cfg.device == 'gpu': # we should already see only one CUDA device, because of env vars assert torch.cuda.device_count() == 1 self.device = torch.device('cuda', index=0) else: self.device = torch.device('cpu') self.actor_critic = create_actor_critic(self.cfg, self.obs_space, self.action_space, timing) self.actor_critic.model_to_device(self.device) for p in self.actor_critic.parameters(): p.requires_grad = False # we don't train anything here log.info('Initialized model on the policy worker %d-%d!', self.policy_id, self.worker_idx) last_report = last_cache_cleanup = time.time() last_report_samples = 0 request_count = deque(maxlen=50) # very conservative limit on the minimum number of requests to wait for # this will almost guarantee that the system will continue collecting experience # at max rate even when 2/3 of workers are stuck for some reason (e.g. doing a long env reset) # Although if your workflow involves very lengthy operations that often freeze workers, it can be beneficial # to set min_num_requests to 1 (at a cost of potential inefficiency, i.e. policy worker will use very small # batches) min_num_requests = self.cfg.num_workers // ( self.cfg.num_policies * self.cfg.policy_workers_per_policy) min_num_requests //= 3 min_num_requests = max(1, min_num_requests) log.info('Min num requests: %d', min_num_requests) # Again, very conservative timer. Only wait a little bit, then continue operation. wait_for_min_requests = 0.025 while not self.terminate: try: while self.shared_buffers.stop_experience_collection[ self.policy_id]: with self.resume_experience_collection_cv: self.resume_experience_collection_cv.wait(timeout=0.05) waiting_started = time.time() while len(self.requests) < min_num_requests and time.time( ) - waiting_started < wait_for_min_requests: try: with timing.timeit('wait_policy'), timing.add_time( 'wait_policy_total'): policy_requests = self.policy_queue.get_many( timeout=0.005) self.requests.extend(policy_requests) except Empty: pass self._update_weights(timing) with timing.timeit('one_step'), timing.add_time( 'handle_policy_step'): if self.initialized: if len(self.requests) > 0: request_count.append(len(self.requests)) self._handle_policy_steps(timing) try: task_type, data = self.task_queue.get_nowait() # task from the task_queue if task_type == TaskType.INIT: self._init() elif task_type == TaskType.TERMINATE: self.terminate = True break elif task_type == TaskType.INIT_MODEL: self._init_model(data) self.task_queue.task_done() except Empty: pass if time.time() - last_report > 3.0 and 'one_step' in timing: timing_stats = dict(wait_policy=timing.wait_policy, step_policy=timing.one_step) samples_since_last_report = self.total_num_samples - last_report_samples stats = memory_stats('policy_worker', self.device) if len(request_count) > 0: stats['avg_request_count'] = np.mean(request_count) self.report_queue.put( dict( timing=timing_stats, samples=samples_since_last_report, policy_id=self.policy_id, stats=stats, )) last_report = time.time() last_report_samples = self.total_num_samples if time.time() - last_cache_cleanup > 300.0 or ( not self.cfg.benchmark and self.total_num_samples < 1000): if self.cfg.device == 'gpu': torch.cuda.empty_cache() last_cache_cleanup = time.time() except KeyboardInterrupt: log.warning('Keyboard interrupt detected on worker %d-%d', self.policy_id, self.worker_idx) self.terminate = True except: log.exception('Unknown exception on policy worker') self.terminate = True time.sleep(0.2) log.info('Policy worker avg. requests %.2f, timing: %s', np.mean(request_count), timing)
def sample(self, proc_idx): # workers should ignore Ctrl+C because the termination is handled in the event loop by a special msg signal.signal(signal.SIGINT, signal.SIG_IGN) timing = Timing() psutil.Process().nice(10) num_envs = len(DMLAB30_LEVELS_THAT_USE_LEVEL_CACHE) assert self.cfg.num_workers % num_envs == 0, f'should have an integer number of workers per env, e.g. {1 * num_envs}, {2 * num_envs}, etc...' assert self.cfg.num_envs_per_worker == 1, 'use populate_cache with 1 env per worker' with timing.timeit('env_init'): env_key = 'env' env_desired_num_levels = 0 global_env_id = proc_idx * self.cfg.num_envs_per_worker env_config = AttrDict(worker_index=proc_idx, vector_index=0, env_id=global_env_id) env = create_env(self.cfg.env, cfg=self.cfg, env_config=env_config) env.seed(global_env_id) # this is to track the performance for individual DMLab levels if hasattr(env.unwrapped, 'level_name'): env_key = env.unwrapped.level_name env_level = env.unwrapped.level approx_num_episodes_per_1b_frames = DMLAB30_APPROX_NUM_EPISODES_PER_BILLION_FRAMES[env_key] num_billions = DESIRED_TRAINING_LENGTH / int(1e9) num_workers_for_env = self.cfg.num_workers // num_envs env_desired_num_levels = int((approx_num_episodes_per_1b_frames * num_billions) / num_workers_for_env) env_num_levels_generated = len(dmlab_level_cache.DMLAB_GLOBAL_LEVEL_CACHE[0].all_seeds[env_level]) // num_workers_for_env log.warning('Worker %d (env %s) generated %d/%d levels!', proc_idx, env_key, env_num_levels_generated, env_desired_num_levels) time.sleep(4) env.reset() env_uses_level_cache = env.unwrapped.env_uses_level_cache self.report_queue.put(dict(proc_idx=proc_idx, finished_reset=True)) self.start_event.wait() try: with timing.timeit('work'): last_report = last_report_frames = total_env_frames = 0 while not self.terminate.value and total_env_frames < self.cfg.sample_env_frames_per_worker: action = env.action_space.sample() with timing.add_time(f'{env_key}.step'): env.step(action) total_env_frames += 1 with timing.add_time(f'{env_key}.reset'): env.reset() env_num_levels_generated += 1 log.debug('Env %s done %d/%d resets', env_key, env_num_levels_generated, env_desired_num_levels) if env_num_levels_generated >= env_desired_num_levels: log.debug('%s finished %d/%d resets, sleeping...', env_key, env_num_levels_generated, env_desired_num_levels) time.sleep(30) # free up CPU time for other envs # if env does not use level cache, there is no need to run it # let other workers proceed if not env_uses_level_cache: log.debug('Env %s does not require cache, sleeping...', env_key) time.sleep(200) with timing.add_time('report'): now = time.time() if now - last_report > self.report_every_sec: last_report = now frames_since_last_report = total_env_frames - last_report_frames last_report_frames = total_env_frames self.report_queue.put(dict(proc_idx=proc_idx, env_frames=frames_since_last_report)) if get_free_disk_space_mb(self.cfg) < 3 * 1024: log.error('Not enough disk space! %d', get_free_disk_space_mb(self.cfg)) time.sleep(200) except: log.exception('Unknown exception') log.error('Unknown exception in worker %d, terminating...', proc_idx) self.report_queue.put(dict(proc_idx=proc_idx, crash=True)) time.sleep(proc_idx * 0.1 + 0.1) log.info('Process %d finished sampling. Timing: %s', proc_idx, timing) env.close()