示例#1
0
 def test_compute_single_query(self):
     fq=smp.FrontendQuery(self.G)
     self.assertTrue(len(smp.FeatureComputer.compute_single_query(fq, smp.SimpleGraphDegree()))>0)
     
     fq_none=smp.FrontendQuery(None)
     self.assertEqual(smp.FeatureComputer.compute_single_query(fq_none, smp.SimpleGraphDegree()),None)
     
     bq=smp.BackendQuery(self.G,self.S)
     self.assertTrue(len(smp.FeatureComputer.compute_single_query(bq, smp.SimpleGraphDegree()))>0)
     
     bq_none=smp.BackendQuery(None, self.S)
     self.assertEqual(smp.FeatureComputer.compute_single_query(bq_none, smp.SimpleGraphDegree()),None)
     
     bq_none=smp.BackendQuery(self.G, None)
     self.assertEqual(smp.FeatureComputer.compute_single_query(bq_none, smp.SimpleGraphDegree()),None)
示例#2
0
            # ba_g2 = dict(Counter(ba_g.values()))
            # ba_gx,ba_gy = log_binning(ba_g2,50)

            #degree distribution
            #             plt.figure(1)
            #             plt.xscale('log')
            #             plt.yscale('log')
            # #            plt.scatter(ba_gx,ba_gy,c='r',marker='s',s=50)
            #             plt.scatter(ba_g2.keys(),ba_g2.values(),c='b',marker='x')
            #             plt.xlabel('Connections (normalized)')
            #             plt.ylabel('Frequency')
            # #            plt.xlim((1e-4,1e-1))
            # #            plt.ylim((.9,1e4))
            #             plt.show()

            original_degree = smp.SimpleGraphDegree()
            original_degree_dis = original_degree.compute_frontend_distribution(
                original)
            print('original_degree_dis', original_degree_dis)
            print('\n')

            original_clusteringcoefficient = smp.SimpleGraphClusteringCoefficient(
            )
            original_clusteringcoefficient_dis = original_clusteringcoefficient.compute_frontend_distribution(
                original)
            print('original_clusteringcoefficient_dis',
                  original_clusteringcoefficient_dis)
            print('\n')

            original_pathlength = smp.SimpleGraphPathLength()
            original_pathlength_dis = original_pathlength.compute_frontend_distribution(
    return feature_dic


if __name__ == "__main__":
    import networkx as nx
    import sampling as smp
    from sampling.sampling_algorithms import *
    #
    G = nx.barabasi_albert_graph(10, 4, 3)

    nx.write_edgelist(G, 'G.edgelist')

    sample_graph = induced_random_edge_sampler(
        G, 5, stopping_condition='UNIQUE_NODES', with_replacement=True)
    print sample_graph.nodes()
    print sample_graph.edges()

    nx.write_edgelist(sample_graph, 'sample.edgelist', data=False)
    q_list = [BackendQuery(), FrontendQuery()]
    f_list = [smp.SimpleGraphDegree()]

    query_list = ['BackendQuery', 'FrontendQuery']
    feature_list = [
        'SimpleGraphDegree', 'SimpleGraphClusteringCoefficient',
        'SimpleGraphPathLength'
    ]
    compute_all_features(G, sample_graph, feature_list, query_list)
#    ex=QueryExecuter()
#    print ex.compute_all_queries(G, sample_graph, f_list, q_list)
#    print compute_all_backend_queries(G, sample_graph, f_list, q_list)
            current_subgraph = new_subgraph
            s.remove(w)
        else:
            s.remove(v)

        if __divergence(G, current_subgraph,
                        divergence, feature) < __divergence(
                            G, best_subgraph, divergence, feature):
            best_subgraph = current_subgraph
        div_scores[i] = __divergence(G, best_subgraph, divergence, feature)
        T = gamma * T
    nx.write_gml(best_subgraph, "best_subgraph.gml")
    return best_subgraph, div_scores


if __name__ == '__main__':
    import analytics
    import pylab
    G = nx.barabasi_albert_graph(1000, 10, 1)
    p = 10 * G.number_of_edges() * log10(
        G.number_of_nodes()) / G.number_of_nodes()
    best, div = metropolis_subgraph_sampler(
        G, 100, analytics.DivergenceMetrics.JensenShannonDivergence,
        smp.SimpleGraphDegree(), 1000, p, 10, 2)
    #print 'div:',div
    Series(div).plot()
    gca().set_ylabel('JS-Divergence')
    gca().set_xlabel('# of iterations')
    pylab.show()
    #pylab.plot(div)