def test_simple(self): X = ["This was a good summer", "The food was awful"] m = InquirerLexTransform() Z = m.transform(X) self.assertEqual(len(Z), 2) self.assertTrue(isinstance(Z[0], str) and isinstance(Z[1], str)) self.assertIn("positiv", Z[0].lower()) self.assertIn("negativ", Z[1].lower()) self.assertNotIn("good", Z[0].lower()) self.assertNotIn("awful", Z[1].lower())
def build_lex_extraction(binary, min_df, ngram): return make_pipeline(InquirerLexTransform(), CountVectorizer(binary=binary, tokenizer=lambda x: x.split(), min_df=min_df, ngram_range=(1, ngram)), Densifier())
def test_empty(self): m = InquirerLexTransform() Z = m.transform([]) self.assertEqual(len(Z), 0)
def test_fit_returns_self(self): m = InquirerLexTransform() s = m.fit([]) self.assertEqual(s, m)