def testUpdateSvd(self): """ Let's see if the update to the SVD works. """ numRuns = 10 for i in range(numRuns): m, n = numpy.random.randint(10, 100), numpy.random.randint(10, 100) k = 3 X = numpy.random.rand(m, n) U, s, V = RandomisedSVD.svd(X, k) E = numpy.random.randn(m, n) * 0.2 U2, s2, V2 = RandomisedSVD.svd(X + E, k) U3, s3, V3 = RandomisedSVD.updateSvd(X, U, s, V, E, k) XE = X + E error1 = numpy.linalg.norm(XE - (U*s).dot(V.T)) error2 = numpy.linalg.norm(XE - (U2*s2).dot(V2.T)) error3 = numpy.linalg.norm(XE - (U3*s3).dot(V3.T)) self.assertTrue(error1 >= error3) #print(error1, error2, error3) #Test use of linear opertors X = GeneralLinearOperator.asLinearOperator(X) E = GeneralLinearOperator.asLinearOperator(E) U3, s3, V3 = RandomisedSVD.updateSvd(X, U, s, V, E, k) error4 = numpy.linalg.norm(XE - (U2*s2).dot(V2.T)) self.assertEquals(error4, error2)
def testSvd2(self): """ We test the situation in which one gives an initial omega matrix for the random projections. """ numRuns = 10 for i in range(numRuns): m, n = numpy.random.randint(10, 100), numpy.random.randint(10, 100) X = numpy.random.rand(m, n) k = numpy.random.randint(5, min(m, n)) U, s, V = RandomisedSVD.svd(X, k) D = numpy.random.rand(m, n)*0.1 Y = X + D U2, s2, V2 = RandomisedSVD.svd(Y, k, p=0, q=0) U3, s3, V3 = RandomisedSVD.svd(Y, k, p=0, q=0, omega=V) error1 = numpy.linalg.norm(Y - (U2*s2).dot(V2.T)) error2 = numpy.linalg.norm(Y - (U3*s3).dot(V3.T)) self.assertTrue(error1 >= error2)
def initUV(self, X): m = X.shape[0] n = X.shape[1] if self.initialAlg == "rand": U = numpy.random.randn(m, self.k) * 0.1 V = numpy.random.randn(n, self.k) * 0.1 elif self.initialAlg == "svd": logging.debug("Initialising with Randomised SVD") U, s, V = RandomisedSVD.svd(X, self.k, self.p, self.q) U = U * s elif self.initialAlg == "softimpute": logging.debug("Initialising with softimpute") trainIterator = iter([X.toScipyCsc()]) rho = 0.01 learner = IterativeSoftImpute(rho, k=self.k, svdAlg="propack", postProcess=True) ZList = learner.learnModel(trainIterator) U, s, V = ZList.next() U = U * s elif self.initialAlg == "wrmf": logging.debug("Initialising with wrmf") learner = WeightedMf(self.k, w=self.w) U, V = learner.learnModel(X.toScipyCsr()) else: raise ValueError("Unknown initialisation: " + str(self.initialAlg)) U = numpy.ascontiguousarray(U) V = numpy.ascontiguousarray(V) return U, V
def testSvd(self): n = 100 m = 80 A = scipy.sparse.rand(m, n, 0.1) ks = [10, 20, 30, 40] q = 2 lastError = numpy.linalg.norm(A.todense()) for k in ks: U, s, V = RandomisedSVD.svd(A, k, q) nptst.assert_array_almost_equal(U.T.dot(U), numpy.eye(k)) nptst.assert_array_almost_equal(V.T.dot(V), numpy.eye(k)) A2 = (U*s).dot(V.T) error = numpy.linalg.norm(A - A2) self.assertTrue(error <= lastError) lastError = error #Compare versus exact svd U, s, V = numpy.linalg.svd(numpy.array(A.todense())) inds = numpy.flipud(numpy.argsort(s))[0:k*2] U, s, V = Util.indSvd(U, s, V, inds) Ak = (U*s).dot(V.T) error2 = numpy.linalg.norm(A - Ak) self.assertTrue(error2 <= error)
def clusterFromIterator(self, graphListIterator, verbose=False): """ Find a set of clusters for the graphs given by the iterator. If verbose is true the each iteration is timed and bounded the results are returned as lists. The difference between a weight matrix and the previous one should be positive. """ clustersList = [] decompositionTimeList = [] kMeansTimeList = [] boundList = [] sinThetaList = [] i = 0 for subW in graphListIterator: if __debug__: Parameter.checkSymmetric(subW) if self.logStep and i % self.logStep == 0: logging.debug("Graph index: " + str(i)) logging.debug("Clustering graph of size " + str(subW.shape)) if self.alg != "efficientNystrom": ABBA = GraphUtils.shiftLaplacian(subW) # --- Eigen value decomposition --- startTime = time.time() if self.alg == "IASC": if i % self.T != 0: omega, Q = self.approxUpdateEig(subW, ABBA, omega, Q) if self.computeBound: inds = numpy.flipud(numpy.argsort(omega)) Q = Q[:, inds] omega = omega[inds] bounds = self.pertBound(omega, Q, omegaKbot, AKbot, self.k2) #boundList.append([i, bounds[0], bounds[1]]) #Now use accurate values of norm of R and delta rank = Util.rank(ABBA.todense()) gamma, U = scipy.sparse.linalg.eigsh(ABBA, rank - 1, which="LM", ncv=ABBA.shape[0]) #logging.debug("gamma=" + str(gamma)) bounds2 = self.realBound(omega, Q, gamma, AKbot, self.k2) boundList.append( [bounds[0], bounds[1], bounds2[0], bounds2[1]]) else: logging.debug("Computing exact eigenvectors") self.storeInformation(subW, ABBA) if self.computeBound: #omega, Q = scipy.sparse.linalg.eigsh(ABBA, min(self.k2*2, ABBA.shape[0]-1), which="LM", ncv = min(10*self.k2, ABBA.shape[0])) rank = Util.rank(ABBA.todense()) omega, Q = scipy.sparse.linalg.eigsh(ABBA, rank - 1, which="LM", ncv=ABBA.shape[0]) inds = numpy.flipud(numpy.argsort(omega)) omegaKbot = omega[inds[self.k2:]] QKbot = Q[:, inds[self.k2:]] AKbot = (QKbot * omegaKbot).dot(QKbot.T) omegaSort = numpy.flipud(numpy.sort(omega)) boundList.append([0] * 4) else: omega, Q = scipy.sparse.linalg.eigsh( ABBA, min(self.k2, ABBA.shape[0] - 1), which="LM", ncv=min(10 * self.k2, ABBA.shape[0])) elif self.alg == "nystrom": omega, Q = Nystrom.eigpsd(ABBA, self.k3) elif self.alg == "exact": omega, Q = scipy.sparse.linalg.eigsh( ABBA, min(self.k1, ABBA.shape[0] - 1), which="LM", ncv=min(15 * self.k1, ABBA.shape[0])) elif self.alg == "efficientNystrom": omega, Q = EfficientNystrom.eigWeight(subW, self.k2, self.k1) elif self.alg == "randomisedSvd": Q, omega, R = RandomisedSVD.svd(ABBA, self.k4) else: raise ValueError("Invalid Algorithm: " + str(self.alg)) if self.computeSinTheta: omegaExact, QExact = scipy.linalg.eigh(ABBA.todense()) inds = numpy.flipud(numpy.argsort(omegaExact)) QExactKbot = QExact[:, inds[self.k1:]] inds = numpy.flipud(numpy.argsort(omega)) QApproxK = Q[:, inds[:self.k1]] sinThetaList.append( scipy.linalg.norm(QExactKbot.T.dot(QApproxK))) decompositionTimeList.append(time.time() - startTime) if self.alg == "IASC": self.storeInformation(subW, ABBA) # --- Kmeans --- startTime = time.time() inds = numpy.flipud(numpy.argsort(omega)) standardiser = Standardiser() #For some very strange reason we get an overflow when computing the #norm of the rows of Q even though its elements are bounded by 1. #We'll ignore it for now try: V = standardiser.normaliseArray(Q[:, inds[0:self.k1]].real.T).T except FloatingPointError as e: logging.warn("FloatingPointError: " + str(e)) V = VqUtils.whiten(V) if i == 0: centroids, distortion = vq.kmeans(V, self.k1, iter=self.nb_iter_kmeans) else: centroids = self.findCentroids(V, clusters[:subW.shape[0]]) if centroids.shape[0] < self.k1: nb_missing_centroids = self.k1 - centroids.shape[0] random_centroids = V[numpy.random.randint( 0, V.shape[0], nb_missing_centroids), :] centroids = numpy.vstack((centroids, random_centroids)) centroids, distortion = vq.kmeans( V, centroids) #iter can only be 1 clusters, distortion = vq.vq(V, centroids) kMeansTimeList.append(time.time() - startTime) clustersList.append(clusters) #logging.debug("subW.shape: " + str(subW.shape)) #logging.debug("len(clusters): " + str(len(clusters))) #from sandbox.util.ProfileUtils import ProfileUtils #logging.debug("Total memory usage: " + str(ProfileUtils.memory()/10**6) + "MB") if ProfileUtils.memory() > 10**9: ProfileUtils.memDisplay(locals()) i += 1 if verbose: eigenQuality = { "boundList": boundList, "sinThetaList": sinThetaList } return clustersList, numpy.array( (decompositionTimeList, kMeansTimeList)).T, eigenQuality else: return clustersList
def next(self): X = self.XIterator.next() logging.debug("Learning on matrix with shape: " + str(X.shape) + " and " + str(X.nnz) + " non-zeros") if self.iterativeSoftImpute.weighted: #Compute row and col probabilities up, vp = SparseUtils.nonzeroRowColsProbs(X) nzuInds = up == 0 nzvInds = vp == 0 u = numpy.sqrt(1 / (up + numpy.array(nzuInds, numpy.int))) v = numpy.sqrt(1 / (vp + numpy.array(nzvInds, numpy.int))) u[nzuInds] = 0 v[nzvInds] = 0 if self.rhos != None: self.iterativeSoftImpute.setRho(self.rhos.next()) if not scipy.sparse.isspmatrix_csc(X): raise ValueError("X must be a csc_matrix not " + str(type(X))) #Figure out what lambda should be #PROPACK has problems with convergence Y = scipy.sparse.csc_matrix(X, dtype=numpy.float) U, s, V = ExpSU.SparseUtils.svdArpack(Y, 1, kmax=20) del Y #U, s, V = SparseUtils.svdPropack(X, 1, kmax=20) maxS = s[0] logging.debug("Largest singular value : " + str(maxS)) (n, m) = X.shape if self.j == 0: self.oldU = numpy.zeros((n, 1)) self.oldS = numpy.zeros(1) self.oldV = numpy.zeros((m, 1)) else: oldN = self.oldU.shape[0] oldM = self.oldV.shape[0] if self.iterativeSoftImpute.updateAlg == "initial": if n > oldN: self.oldU = Util.extendArray( self.oldU, (n, self.oldU.shape[1])) elif n < oldN: self.oldU = self.oldU[0:n, :] if m > oldM: self.oldV = Util.extendArray( self.oldV, (m, self.oldV.shape[1])) elif m < oldN: self.oldV = self.oldV[0:m, :] elif self.iterativeSoftImpute.updateAlg == "zero": self.oldU = numpy.zeros((n, 1)) self.oldS = numpy.zeros(1) self.oldV = numpy.zeros((m, 1)) else: raise ValueError("Unknown SVD update algorithm: " + self.updateAlg) rowInds, colInds = X.nonzero() gamma = self.iterativeSoftImpute.eps + 1 i = 0 self.iterativeSoftImpute.measures = numpy.zeros( (self.iterativeSoftImpute.maxIterations, 4)) while gamma > self.iterativeSoftImpute.eps: if i == self.iterativeSoftImpute.maxIterations: logging.debug("Maximum number of iterations reached") break ZOmega = SparseUtilsCython.partialReconstructPQ( (rowInds, colInds), self.oldU * self.oldS, self.oldV) Y = X - ZOmega #Y = Y.tocsc() #del ZOmega Y = csarray(Y, storagetype="row") gc.collect() #os.system('taskset -p 0xffffffff %d' % os.getpid()) if self.iterativeSoftImpute.svdAlg == "propack": L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=False) newU, newS, newV = SparseUtils.svdPropack( L, k=self.iterativeSoftImpute.k, kmax=self.iterativeSoftImpute.kmax) elif self.iterativeSoftImpute.svdAlg == "arpack": L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=False) newU, newS, newV = SparseUtils.svdArpack( L, k=self.iterativeSoftImpute.k, kmax=self.iterativeSoftImpute.kmax) elif self.iterativeSoftImpute.svdAlg == "svdUpdate": newU, newS, newV = SVDUpdate.addSparseProjected( self.oldU, self.oldS, self.oldV, Y, self.iterativeSoftImpute.k) elif self.iterativeSoftImpute.svdAlg == "rsvd": L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=True) newU, newS, newV = RandomisedSVD.svd( L, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p, q=self.iterativeSoftImpute.q) elif self.iterativeSoftImpute.svdAlg == "rsvdUpdate": L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=True) if self.j == 0: newU, newS, newV = RandomisedSVD.svd( L, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p, q=self.iterativeSoftImpute.q) else: newU, newS, newV = RandomisedSVD.svd( L, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p, q=self.iterativeSoftImpute.qu, omega=self.oldV) elif self.iterativeSoftImpute.svdAlg == "rsvdUpdate2": if self.j == 0: L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=True) newU, newS, newV = RandomisedSVD.svd( L, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p, q=self.iterativeSoftImpute.q) else: #Need linear operator which is U s V L = LinOperatorUtils.lowRankOp( self.oldU, self.oldS, self.oldV) Y = GeneralLinearOperator.asLinearOperator( Y, parallel=True) newU, newS, newV = RandomisedSVD.updateSvd( L, self.oldU, self.oldS, self.oldV, Y, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p) else: raise ValueError("Unknown SVD algorithm: " + self.iterativeSoftImpute.svdAlg) if self.iterativeSoftImpute.weighted and i == 0: delta = numpy.diag((u * newU.T).dot(newU)) pi = numpy.diag((v * newV.T).dot(newV)) lmbda = (maxS / numpy.max( delta * pi)) * self.iterativeSoftImpute.rho lmbdav = lmbda * delta * pi elif not self.iterativeSoftImpute.weighted: lmbda = maxS * self.iterativeSoftImpute.rho if i == 0: logging.debug("lambda: " + str(lmbda)) lmbdav = lmbda newS = newS - lmbdav #Soft threshold newS = numpy.clip(newS, 0, numpy.max(newS)) normOldZ = (self.oldS**2).sum() normNewZmOldZ = (self.oldS**2).sum() + ( newS**2).sum() - 2 * numpy.trace( (self.oldV.T.dot(newV * newS)).dot( newU.T.dot(self.oldU * self.oldS))) #We can get newZ == oldZ in which case we break if normNewZmOldZ < self.tol: gamma = 0 elif abs(normOldZ) < self.tol: gamma = self.iterativeSoftImpute.eps + 1 else: gamma = normNewZmOldZ / normOldZ if self.iterativeSoftImpute.verbose: theta1 = ( self.iterativeSoftImpute.k - numpy.linalg.norm(self.oldU.T.dot(newU), 'fro')** 2) / self.iterativeSoftImpute.k theta2 = ( self.iterativeSoftImpute.k - numpy.linalg.norm(self.oldV.T.dot(newV), 'fro')** 2) / self.iterativeSoftImpute.k thetaS = numpy.linalg.norm( newS - self.oldS)**2 / numpy.linalg.norm(newS)**2 self.iterativeSoftImpute.measures[i, :] = numpy.array( [gamma, theta1, theta2, thetaS]) self.oldU = newU.copy() self.oldS = newS.copy() self.oldV = newV.copy() logging.debug("Iteration " + str(i) + " gamma=" + str(gamma)) i += 1 if self.iterativeSoftImpute.postProcess: #Add the mean vectors previousS = newS newU = numpy.c_[newU, numpy.array(X.mean(1)).ravel()] newV = numpy.c_[newV, numpy.array(X.mean(0)).ravel()] newS = self.iterativeSoftImpute.unshrink(X, newU, newV) #Note that this increases the rank of U and V by 1 #print("Difference in s after postprocessing: " + str(numpy.linalg.norm(previousS - newS[0:-1]))) logging.debug("Difference in s after postprocessing: " + str(numpy.linalg.norm(previousS - newS[0:-1]))) logging.debug("Number of iterations for rho=" + str(self.iterativeSoftImpute.rho) + ": " + str(i)) self.j += 1 return (newU, newS, newV)
def next(self): X = self.XIterator.next() logging.debug("Learning on matrix with shape: " + str(X.shape) + " and " + str(X.nnz) + " non-zeros") if self.iterativeSoftImpute.weighted: #Compute row and col probabilities up, vp = SparseUtils.nonzeroRowColsProbs(X) nzuInds = up==0 nzvInds = vp==0 u = numpy.sqrt(1/(up + numpy.array(nzuInds, numpy.int))) v = numpy.sqrt(1/(vp + numpy.array(nzvInds, numpy.int))) u[nzuInds] = 0 v[nzvInds] = 0 if self.rhos != None: self.iterativeSoftImpute.setRho(self.rhos.next()) if not scipy.sparse.isspmatrix_csc(X): raise ValueError("X must be a csc_matrix not " + str(type(X))) #Figure out what lambda should be #PROPACK has problems with convergence Y = scipy.sparse.csc_matrix(X, dtype=numpy.float) U, s, V = ExpSU.SparseUtils.svdArpack(Y, 1, kmax=20) del Y #U, s, V = SparseUtils.svdPropack(X, 1, kmax=20) maxS = s[0] logging.debug("Largest singular value : " + str(maxS)) (n, m) = X.shape if self.j == 0: self.oldU = numpy.zeros((n, 1)) self.oldS = numpy.zeros(1) self.oldV = numpy.zeros((m, 1)) else: oldN = self.oldU.shape[0] oldM = self.oldV.shape[0] if self.iterativeSoftImpute.updateAlg == "initial": if n > oldN: self.oldU = Util.extendArray(self.oldU, (n, self.oldU.shape[1])) elif n < oldN: self.oldU = self.oldU[0:n, :] if m > oldM: self.oldV = Util.extendArray(self.oldV, (m, self.oldV.shape[1])) elif m < oldN: self.oldV = self.oldV[0:m, :] elif self.iterativeSoftImpute.updateAlg == "zero": self.oldU = numpy.zeros((n, 1)) self.oldS = numpy.zeros(1) self.oldV = numpy.zeros((m, 1)) else: raise ValueError("Unknown SVD update algorithm: " + self.updateAlg) rowInds, colInds = X.nonzero() gamma = self.iterativeSoftImpute.eps + 1 i = 0 self.iterativeSoftImpute.measures = numpy.zeros((self.iterativeSoftImpute.maxIterations, 4)) while gamma > self.iterativeSoftImpute.eps: if i == self.iterativeSoftImpute.maxIterations: logging.debug("Maximum number of iterations reached") break ZOmega = SparseUtilsCython.partialReconstructPQ((rowInds, colInds), self.oldU*self.oldS, self.oldV) Y = X - ZOmega #Y = Y.tocsc() #del ZOmega Y = csarray(Y, storagetype="row") gc.collect() #os.system('taskset -p 0xffffffff %d' % os.getpid()) if self.iterativeSoftImpute.svdAlg=="propack": L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=False) newU, newS, newV = SparseUtils.svdPropack(L, k=self.iterativeSoftImpute.k, kmax=self.iterativeSoftImpute.kmax) elif self.iterativeSoftImpute.svdAlg=="arpack": L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=False) newU, newS, newV = SparseUtils.svdArpack(L, k=self.iterativeSoftImpute.k, kmax=self.iterativeSoftImpute.kmax) elif self.iterativeSoftImpute.svdAlg=="svdUpdate": newU, newS, newV = SVDUpdate.addSparseProjected(self.oldU, self.oldS, self.oldV, Y, self.iterativeSoftImpute.k) elif self.iterativeSoftImpute.svdAlg=="rsvd": L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=True) newU, newS, newV = RandomisedSVD.svd(L, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p, q=self.iterativeSoftImpute.q) elif self.iterativeSoftImpute.svdAlg=="rsvdUpdate": L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=True) if self.j == 0: newU, newS, newV = RandomisedSVD.svd(L, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p, q=self.iterativeSoftImpute.q) else: newU, newS, newV = RandomisedSVD.svd(L, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p, q=self.iterativeSoftImpute.qu, omega=self.oldV) elif self.iterativeSoftImpute.svdAlg=="rsvdUpdate2": if self.j == 0: L = LinOperatorUtils.sparseLowRankOp(Y, self.oldU, self.oldS, self.oldV, parallel=True) newU, newS, newV = RandomisedSVD.svd(L, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p, q=self.iterativeSoftImpute.q) else: #Need linear operator which is U s V L = LinOperatorUtils.lowRankOp(self.oldU, self.oldS, self.oldV) Y = GeneralLinearOperator.asLinearOperator(Y, parallel=True) newU, newS, newV = RandomisedSVD.updateSvd(L, self.oldU, self.oldS, self.oldV, Y, self.iterativeSoftImpute.k, p=self.iterativeSoftImpute.p) else: raise ValueError("Unknown SVD algorithm: " + self.iterativeSoftImpute.svdAlg) if self.iterativeSoftImpute.weighted and i==0: delta = numpy.diag((u*newU.T).dot(newU)) pi = numpy.diag((v*newV.T).dot(newV)) lmbda = (maxS/numpy.max(delta*pi))*self.iterativeSoftImpute.rho lmbdav = lmbda*delta*pi elif not self.iterativeSoftImpute.weighted: lmbda = maxS*self.iterativeSoftImpute.rho if i==0: logging.debug("lambda: " + str(lmbda)) lmbdav = lmbda newS = newS - lmbdav #Soft threshold newS = numpy.clip(newS, 0, numpy.max(newS)) normOldZ = (self.oldS**2).sum() normNewZmOldZ = (self.oldS**2).sum() + (newS**2).sum() - 2*numpy.trace((self.oldV.T.dot(newV*newS)).dot(newU.T.dot(self.oldU*self.oldS))) #We can get newZ == oldZ in which case we break if normNewZmOldZ < self.tol: gamma = 0 elif abs(normOldZ) < self.tol: gamma = self.iterativeSoftImpute.eps + 1 else: gamma = normNewZmOldZ/normOldZ if self.iterativeSoftImpute.verbose: theta1 = (self.iterativeSoftImpute.k - numpy.linalg.norm(self.oldU.T.dot(newU), 'fro')**2)/self.iterativeSoftImpute.k theta2 = (self.iterativeSoftImpute.k - numpy.linalg.norm(self.oldV.T.dot(newV), 'fro')**2)/self.iterativeSoftImpute.k thetaS = numpy.linalg.norm(newS - self.oldS)**2/numpy.linalg.norm(newS)**2 self.iterativeSoftImpute.measures[i, :] = numpy.array([gamma, theta1, theta2, thetaS]) self.oldU = newU.copy() self.oldS = newS.copy() self.oldV = newV.copy() logging.debug("Iteration " + str(i) + " gamma="+str(gamma)) i += 1 if self.iterativeSoftImpute.postProcess: #Add the mean vectors previousS = newS newU = numpy.c_[newU, numpy.array(X.mean(1)).ravel()] newV = numpy.c_[newV, numpy.array(X.mean(0)).ravel()] newS = self.iterativeSoftImpute.unshrink(X, newU, newV) #Note that this increases the rank of U and V by 1 #print("Difference in s after postprocessing: " + str(numpy.linalg.norm(previousS - newS[0:-1]))) logging.debug("Difference in s after postprocessing: " + str(numpy.linalg.norm(previousS - newS[0:-1]))) logging.debug("Number of iterations for rho="+str(self.iterativeSoftImpute.rho) + ": " + str(i)) self.j += 1 return (newU, newS, newV)
print(i) if i == 10: break tempTimes = [] tempErrors = [] startTime = time.time() U, s, V = SparseUtils.svdPropack(X, k) tempTimes.append(time.time()-startTime) tempErrors.append(numpy.linalg.norm(numpy.array(X.todense()) - (U*s).dot(V.T))/numpy.linalg.norm(X.todense())) for p in ps: for q in qs: startTime = time.time() U2, s2, V2 = RandomisedSVD.svd(X, k, p, q) tempTimes.append(time.time()-startTime) tempErrors.append(numpy.linalg.norm(numpy.array(X.todense()) - (U2*s2).dot(V2.T))/numpy.linalg.norm(X.todense()) ) startTime = time.time() if i == 0: U3, s3, V3 = RandomisedSVD.svd(X, k, p, q) else: U3, s3, V3 = RandomisedSVD.svd(X, k, p, q, omega=lastV) tempTimes.append(time.time()-startTime) tempErrors.append(numpy.linalg.norm(numpy.array(X.todense()) - (U3*s3).dot(V3.T))/numpy.linalg.norm(X.todense()) ) lastU = U2 lastS = s2 lastV = V2
def clusterFromIterator(self, graphListIterator, verbose=False): """ Find a set of clusters for the graphs given by the iterator. If verbose is true the each iteration is timed and bounded the results are returned as lists. The difference between a weight matrix and the previous one should be positive. """ clustersList = [] decompositionTimeList = [] kMeansTimeList = [] boundList = [] sinThetaList = [] i = 0 for subW in graphListIterator: if __debug__: Parameter.checkSymmetric(subW) if self.logStep and i % self.logStep == 0: logging.debug("Graph index: " + str(i)) logging.debug("Clustering graph of size " + str(subW.shape)) if self.alg!="efficientNystrom": ABBA = GraphUtils.shiftLaplacian(subW) # --- Eigen value decomposition --- startTime = time.time() if self.alg=="IASC": if i % self.T != 0: omega, Q = self.approxUpdateEig(subW, ABBA, omega, Q) if self.computeBound: inds = numpy.flipud(numpy.argsort(omega)) Q = Q[:, inds] omega = omega[inds] bounds = self.pertBound(omega, Q, omegaKbot, AKbot, self.k2) #boundList.append([i, bounds[0], bounds[1]]) #Now use accurate values of norm of R and delta rank = Util.rank(ABBA.todense()) gamma, U = scipy.sparse.linalg.eigsh(ABBA, rank-1, which="LM", ncv = ABBA.shape[0]) #logging.debug("gamma=" + str(gamma)) bounds2 = self.realBound(omega, Q, gamma, AKbot, self.k2) boundList.append([bounds[0], bounds[1], bounds2[0], bounds2[1]]) else: logging.debug("Computing exact eigenvectors") self.storeInformation(subW, ABBA) if self.computeBound: #omega, Q = scipy.sparse.linalg.eigsh(ABBA, min(self.k2*2, ABBA.shape[0]-1), which="LM", ncv = min(10*self.k2, ABBA.shape[0])) rank = Util.rank(ABBA.todense()) omega, Q = scipy.sparse.linalg.eigsh(ABBA, rank-1, which="LM", ncv = ABBA.shape[0]) inds = numpy.flipud(numpy.argsort(omega)) omegaKbot = omega[inds[self.k2:]] QKbot = Q[:, inds[self.k2:]] AKbot = (QKbot*omegaKbot).dot(QKbot.T) omegaSort = numpy.flipud(numpy.sort(omega)) boundList.append([0]*4) else: omega, Q = scipy.sparse.linalg.eigsh(ABBA, min(self.k2, ABBA.shape[0]-1), which="LM", ncv = min(10*self.k2, ABBA.shape[0])) elif self.alg == "nystrom": omega, Q = Nystrom.eigpsd(ABBA, self.k3) elif self.alg == "exact": omega, Q = scipy.sparse.linalg.eigsh(ABBA, min(self.k1, ABBA.shape[0]-1), which="LM", ncv = min(15*self.k1, ABBA.shape[0])) elif self.alg == "efficientNystrom": omega, Q = EfficientNystrom.eigWeight(subW, self.k2, self.k1) elif self.alg == "randomisedSvd": Q, omega, R = RandomisedSVD.svd(ABBA, self.k4) else: raise ValueError("Invalid Algorithm: " + str(self.alg)) if self.computeSinTheta: omegaExact, QExact = scipy.linalg.eigh(ABBA.todense()) inds = numpy.flipud(numpy.argsort(omegaExact)) QExactKbot = QExact[:, inds[self.k1:]] inds = numpy.flipud(numpy.argsort(omega)) QApproxK = Q[:,inds[:self.k1]] sinThetaList.append(scipy.linalg.norm(QExactKbot.T.dot(QApproxK))) decompositionTimeList.append(time.time()-startTime) if self.alg=="IASC": self.storeInformation(subW, ABBA) # --- Kmeans --- startTime = time.time() inds = numpy.flipud(numpy.argsort(omega)) standardiser = Standardiser() #For some very strange reason we get an overflow when computing the #norm of the rows of Q even though its elements are bounded by 1. #We'll ignore it for now try: V = standardiser.normaliseArray(Q[:, inds[0:self.k1]].real.T).T except FloatingPointError as e: logging.warn("FloatingPointError: " + str(e)) V = VqUtils.whiten(V) if i == 0: centroids, distortion = vq.kmeans(V, self.k1, iter=self.nb_iter_kmeans) else: centroids = self.findCentroids(V, clusters[:subW.shape[0]]) if centroids.shape[0] < self.k1: nb_missing_centroids = self.k1 - centroids.shape[0] random_centroids = V[numpy.random.randint(0, V.shape[0], nb_missing_centroids),:] centroids = numpy.vstack((centroids, random_centroids)) centroids, distortion = vq.kmeans(V, centroids) #iter can only be 1 clusters, distortion = vq.vq(V, centroids) kMeansTimeList.append(time.time()-startTime) clustersList.append(clusters) #logging.debug("subW.shape: " + str(subW.shape)) #logging.debug("len(clusters): " + str(len(clusters))) #from sandbox.util.ProfileUtils import ProfileUtils #logging.debug("Total memory usage: " + str(ProfileUtils.memory()/10**6) + "MB") if ProfileUtils.memory() > 10**9: ProfileUtils.memDisplay(locals()) i += 1 if verbose: eigenQuality = {"boundList" : boundList, "sinThetaList" : sinThetaList} return clustersList, numpy.array((decompositionTimeList, kMeansTimeList)).T, eigenQuality else: return clustersList
#Nystrom method print("Running Nystrom") for j, nystromN in enumerate(nystromNs): omega2, Q2 = Nystrom.eigpsd(L, nystromN) inds = numpy.flipud(numpy.argsort(omega2)) omega2, Q2 = omega2[inds], Q2[:, inds] omega2k, Q2k = omega2[0:k], Q2[:, 0:k] # errors[i, j] += computeBound(L, omega, Q, omega2k, Q2k, k) errors[i, j] += computeSinTheta(Qkbot, Q2k) #Randomised SVD method print("Running Random SVD") for j, r in enumerate(randSVDVecs): Q4, omega4, R4 = RandomisedSVD.svd(L, r) inds = numpy.flipud(numpy.argsort(omega4)) omega4, Q4 = omega4[inds], Q4[:, inds] omega4k, Q4k = omega4[0:k], Q4[:, 0:k] # errors[i, j+len(nystromNs)] += computeBound(L, omega, Q, omega4k, Q4k, k) errors[i, j+len(nystromNs)] += computeSinTheta(Qkbot, Q4k) #Incremental updates print("Running Eigen-update") for j, l in enumerate(IASCL): omega3, Q3 = eigenUpdate(lastL, L, lastOmegas[j], lastQs[j], l) inds = numpy.flipud(numpy.argsort(omega3)) omega3, Q3 = omega3[inds], Q3[:, inds] omega3k, Q3k = omega3[0:k], Q3[:, 0:k]