示例#1
0
        def get_rma():
            # type: () -> RMAType
            img_geometry = img['image_geometry']
            near_range = img_geometry['range_to_first_sample']
            center_time = parse_timestring(img['center_pixel']['center_time'],
                                           precision='us')
            first_time = parse_timestring(img_geometry['first_line_time'],
                                          precision='us')
            zd_time_scp = get_seconds(center_time, first_time, 'us')
            r_ca_scp = near_range + image_data.SCPPixel.Row * grid.Row.SS
            time_ca_poly = numpy.array(
                [zd_time_scp, -look * ss_zd_s / grid.Col.SS], dtype='float64')

            timecoa_value = get_seconds(center_time, start_time)
            arp_velocity = position.ARPPoly.derivative_eval(timecoa_value,
                                                            der_order=1)
            vm_ca = numpy.linalg.norm(arp_velocity)
            inca = INCAType(R_CA_SCP=r_ca_scp,
                            FreqZero=fc,
                            TimeCAPoly=time_ca_poly,
                            DRateSFPoly=[
                                [1 / (vm_ca * ss_zd_s / grid.Col.SS)],
                            ])

            return RMAType(RMAlgoType='RG_DOP', INCA=inca)
示例#2
0
 def get_rma() -> RMAType:
     dop_centroid_poly = Poly2DType(Coefs=dop_centroid_poly_coeffs)
     dop_centroid_coa = True
     if collect_info.RadarMode.ModeType == 'SPOTLIGHT':
         dop_centroid_poly = None
         dop_centroid_coa = None
     # NB: DRateSFPoly is defined as a function of only range - reshape appropriately
     inca = INCAType(
         R_CA_SCP=r_ca_scp,
         FreqZero=center_freq,
         DRateSFPoly=Poly2DType(
             Coefs=numpy.reshape(drate_sf_poly_coefs, (-1, 1))),
         DopCentroidPoly=dop_centroid_poly,
         DopCentroidCOA=dop_centroid_coa,
         TimeCAPoly=Poly1DType(Coefs=time_ca_poly_coeffs))
     return RMAType(RMAlgoType='OMEGA_K', INCA=inca)
示例#3
0
文件: csk.py 项目: LordHui/sarpy
 def get_rma():
     # type: () -> RMAType
     inca = INCAType(FreqZero=center_frequency)
     return RMAType(RMAlgoType='OMEGA_K',
                    INCA=inca)
示例#4
0
 def get_rma():
     # type: () -> RMAType
     return RMAType(RMAlgoType='OMEGA_K', INCA=INCAType(DopCentroidCOA=True))
示例#5
0
    def _get_rma_adjust_grid(self, scpcoa, grid, image_data, position,
                             collection_info):
        """
        Gets the RMA metadata, and adjust the Grid.Col metadata.

        Parameters
        ----------
        scpcoa : SCPCOAType
        grid : GridType
        image_data : ImageDataType
        position : PositionType
        collection_info : CollectionInfoType

        Returns
        -------
        RMAType
        """

        look = scpcoa.look
        start_time = self._get_start_time()
        center_freq = self._get_center_frequency()
        doppler_bandwidth = float(
            self._find('./imageGenerationParameters'
                       '/sarProcessingInformation'
                       '/totalProcessedAzimuthBandwidth').text)
        zero_dop_last_line = parse_timestring(
            self._find('./imageGenerationParameters'
                       '/sarProcessingInformation'
                       '/zeroDopplerTimeLastLine').text)
        zero_dop_first_line = parse_timestring(
            self._find('./imageGenerationParameters'
                       '/sarProcessingInformation'
                       '/zeroDopplerTimeFirstLine').text)
        if look > 1:  # SideOfTrack == 'L'
            # we explicitly want negative time order
            if zero_dop_first_line < zero_dop_last_line:
                zero_dop_first_line, zero_dop_last_line = zero_dop_last_line, zero_dop_first_line
        else:
            # we explicitly want positive time order
            if zero_dop_first_line > zero_dop_last_line:
                zero_dop_first_line, zero_dop_last_line = zero_dop_last_line, zero_dop_first_line
        col_spacing_zd = get_seconds(zero_dop_last_line,
                                     zero_dop_first_line,
                                     precision='us') / (image_data.NumCols - 1)
        # zero doppler time of SCP relative to collect start
        time_scp_zd = get_seconds(zero_dop_first_line, start_time, precision='us') + \
            image_data.SCPPixel.Col*col_spacing_zd
        if self.generation == 'RS2':
            near_range = float(
                self._find('./imageGenerationParameters'
                           '/sarProcessingInformation'
                           '/slantRangeNearEdge').text)
        elif self.generation == 'RCM':
            near_range = float(
                self._find('./sceneAttributes'
                           '/imageAttributes'
                           '/slantRangeNearEdge').text)
        else:
            raise ValueError('unhandled generation {}'.format(self.generation))

        inca = INCAType(R_CA_SCP=near_range +
                        (image_data.SCPPixel.Row * grid.Row.SS),
                        FreqZero=center_freq)
        # doppler rate calculations
        velocity = position.ARPPoly.derivative_eval(time_scp_zd, 1)
        vel_ca_squared = numpy.sum(velocity * velocity)
        # polynomial representing range as a function of range distance from SCP
        r_ca = numpy.array([inca.R_CA_SCP, 1], dtype=numpy.float64)
        # doppler rate coefficients
        if self.generation == 'RS2':
            doppler_rate_coeffs = numpy.array([
                float(entry) for entry in self._find(
                    './imageGenerationParameters'
                    '/dopplerRateValues'
                    '/dopplerRateValuesCoefficients').text.split()
            ],
                                              dtype=numpy.float64)
            doppler_rate_ref_time = float(
                self._find('./imageGenerationParameters'
                           '/dopplerRateValues'
                           '/dopplerRateReferenceTime').text)
        elif self.generation == 'RCM':
            doppler_rate_coeffs = numpy.array([
                float(entry) for entry in self._find(
                    './dopplerRate'
                    '/dopplerRateEstimate'
                    '/dopplerRateCoefficients').text.split()
            ],
                                              dtype=numpy.float64)
            doppler_rate_ref_time = float(
                self._find('./dopplerRate'
                           '/dopplerRateEstimate'
                           '/dopplerRateReferenceTime').text)
        else:
            raise ValueError('unhandled generation {}'.format(self.generation))

        # the doppler_rate_coeffs represents a polynomial in time, relative to
        #   doppler_rate_ref_time.
        # to construct the doppler centroid polynomial, we need to change scales
        #   to a polynomial in space, relative to SCP.
        doppler_rate_poly = Poly1DType(Coefs=doppler_rate_coeffs)
        alpha = 2.0 / speed_of_light
        t_0 = doppler_rate_ref_time - alpha * inca.R_CA_SCP
        dop_rate_scaled_coeffs = doppler_rate_poly.shift(t_0,
                                                         alpha,
                                                         return_poly=False)
        # DRateSFPoly is then a scaled multiple of this scaled poly and r_ca above
        coeffs = -numpy.convolve(dop_rate_scaled_coeffs, r_ca) / (
            alpha * center_freq * vel_ca_squared)
        inca.DRateSFPoly = Poly2DType(
            Coefs=numpy.reshape(coeffs, (coeffs.size, 1)))

        # modify a few of the other fields
        ss_scale = numpy.sqrt(vel_ca_squared) * inca.DRateSFPoly[0, 0]
        grid.Col.SS = col_spacing_zd * ss_scale
        grid.Col.ImpRespBW = -look * doppler_bandwidth / ss_scale
        inca.TimeCAPoly = Poly1DType(Coefs=[time_scp_zd, 1. / ss_scale])

        # doppler centroid
        if self.generation == 'RS2':
            doppler_cent_coeffs = numpy.array([
                float(entry) for entry in self._find(
                    './imageGenerationParameters'
                    '/dopplerCentroid'
                    '/dopplerCentroidCoefficients').text.split()
            ],
                                              dtype=numpy.float64)
            doppler_cent_ref_time = float(
                self._find('./imageGenerationParameters'
                           '/dopplerCentroid'
                           '/dopplerCentroidReferenceTime').text)
            doppler_cent_time_est = parse_timestring(
                self._find('./imageGenerationParameters'
                           '/dopplerCentroid'
                           '/timeOfDopplerCentroidEstimate').text)
        elif self.generation == 'RCM':
            doppler_cent_coeffs = numpy.array([
                float(entry) for entry in self._find(
                    './dopplerCentroid'
                    '/dopplerCentroidEstimate'
                    '/dopplerCentroidCoefficients').text.split()
            ],
                                              dtype=numpy.float64)
            doppler_cent_ref_time = float(
                self._find('./dopplerCentroid'
                           '/dopplerCentroidEstimate'
                           '/dopplerCentroidReferenceTime').text)
            doppler_cent_time_est = parse_timestring(
                self._find('./dopplerCentroid'
                           '/dopplerCentroidEstimate'
                           '/timeOfDopplerCentroidEstimate').text)
        else:
            raise ValueError('unhandled generation {}'.format(self.generation))

        doppler_cent_poly = Poly1DType(Coefs=doppler_cent_coeffs)
        alpha = 2.0 / speed_of_light
        t_0 = doppler_cent_ref_time - alpha * inca.R_CA_SCP
        scaled_coeffs = doppler_cent_poly.shift(t_0, alpha, return_poly=False)
        inca.DopCentroidPoly = Poly2DType(
            Coefs=numpy.reshape(scaled_coeffs, (scaled_coeffs.size, 1)))
        # adjust doppler centroid for spotlight, we need to add a second
        # dimension to DopCentroidPoly
        if collection_info.RadarMode.ModeType == 'SPOTLIGHT':
            doppler_cent_est = get_seconds(doppler_cent_time_est,
                                           start_time,
                                           precision='us')
            doppler_cent_col = (doppler_cent_est -
                                time_scp_zd) / col_spacing_zd
            dop_poly = numpy.zeros((scaled_coeffs.shape[0], 2),
                                   dtype=numpy.float64)
            dop_poly[:, 0] = scaled_coeffs
            dop_poly[0, 1] = -look * center_freq * alpha * numpy.sqrt(
                vel_ca_squared) / inca.R_CA_SCP
            # dopplerCentroid in native metadata was defined at specific column,
            # which might not be our SCP column.  Adjust so that SCP column is correct.
            dop_poly[0, 0] = dop_poly[0, 0] - (dop_poly[0, 1] *
                                               doppler_cent_col * grid.Col.SS)
            inca.DopCentroidPoly = Poly2DType(Coefs=dop_poly)

        grid.Col.DeltaKCOAPoly = Poly2DType(
            Coefs=inca.DopCentroidPoly.get_array() * col_spacing_zd /
            grid.Col.SS)
        # compute grid.Col.DeltaK1/K2 from DeltaKCOAPoly
        coeffs = grid.Col.DeltaKCOAPoly.get_array()[:, 0]
        # get roots
        roots = polynomial.polyroots(coeffs)
        # construct range bounds (in meters)
        range_bounds = (
            numpy.array([0, image_data.NumRows - 1], dtype=numpy.float64) -
            image_data.SCPPixel.Row) * grid.Row.SS
        possible_ranges = numpy.copy(range_bounds)
        useful_roots = ((roots > numpy.min(range_bounds)) &
                        (roots < numpy.max(range_bounds)))
        if numpy.any(useful_roots):
            possible_ranges = numpy.concatenate(
                (possible_ranges, roots[useful_roots]), axis=0)
        azimuth_bounds = (
            numpy.array([0, (image_data.NumCols - 1)], dtype=numpy.float64) -
            image_data.SCPPixel.Col) * grid.Col.SS
        coords_az_2d, coords_rg_2d = numpy.meshgrid(azimuth_bounds,
                                                    possible_ranges)
        possible_bounds_deltak = grid.Col.DeltaKCOAPoly(
            coords_rg_2d, coords_az_2d)
        grid.Col.DeltaK1 = numpy.min(
            possible_bounds_deltak) - 0.5 * grid.Col.ImpRespBW
        grid.Col.DeltaK2 = numpy.max(
            possible_bounds_deltak) + 0.5 * grid.Col.ImpRespBW
        # Wrapped spectrum
        if (grid.Col.DeltaK1 < -0.5 / grid.Col.SS) or (grid.Col.DeltaK2 >
                                                       0.5 / grid.Col.SS):
            grid.Col.DeltaK1 = -0.5 / abs(grid.Col.SS)
            grid.Col.DeltaK2 = -grid.Col.DeltaK1
        time_coa_poly = fit_time_coa_polynomial(inca,
                                                image_data,
                                                grid,
                                                dop_rate_scaled_coeffs,
                                                poly_order=2)
        if collection_info.RadarMode.ModeType == 'SPOTLIGHT':
            # using above was convenience, but not really sensible in spotlight mode
            grid.TimeCOAPoly = Poly2DType(Coefs=[
                [
                    time_coa_poly.Coefs[0, 0],
                ],
            ])
            inca.DopCentroidPoly = None
        elif collection_info.RadarMode.ModeType == 'STRIPMAP':
            # fit TimeCOAPoly for grid
            grid.TimeCOAPoly = time_coa_poly
            inca.DopCentroidCOA = True
        else:
            raise ValueError('unhandled ModeType {}'.format(
                collection_info.RadarMode.ModeType))
        return RMAType(RMAlgoType='OMEGA_K', INCA=inca)