def _create_plot_pr(self, estimate=False): """ Create and prepare invertor instance from a plottable data set. :param path: path of the file to read in """ # Sanity check if self.current_plottable is None: msg = "Please load a valid data set before proceeding." wx.PostEvent(self.parent, StatusEvent(status=msg)) return None # Get the data from the chosen data set and perform inversion pr = Invertor() pr.d_max = self.max_length pr.alpha = self.alpha pr.q_min = self.q_min pr.q_max = self.q_max pr.x = self.current_plottable.x pr.y = self.current_plottable.y pr.est_bck = self.est_bck pr.slit_height = self.slit_height pr.slit_width = self.slit_width pr.background = self.bck_val # Keep track of the plot window title to ensure that # we can overlay the plots pr.info["plot_group_id"] = self.current_plottable.group_id # Fill in errors if none were provided err = self.current_plottable.dy all_zeros = True if err is None: err = np.zeros(len(pr.y)) else: for i in range(len(err)): if err[i] > 0: all_zeros = False if all_zeros: scale = None min_err = 0.0 for i in range(len(pr.y)): # Scale the error so that we can fit over several decades of Q if scale is None: scale = 0.05 * math.sqrt(pr.y[i]) min_err = 0.01 * pr.y[i] err[i] = scale * math.sqrt(math.fabs(pr.y[i])) + min_err message = "The loaded file had no error bars, " message += "statistical errors are assumed." wx.PostEvent(self.parent, StatusEvent(status=message)) pr.err = err return pr
def _fit_pr(self, evt): """ """ # Generate P(r) for sphere radius = 60.0 d_max = 2 * radius r = pylab.arange(0.01, d_max, d_max / 51.0) M = len(r) y = np.zeros(M) pr_err = np.zeros(M) total = 0.0 for j in range(M): value = self.pr_theory(r[j], radius) total += value y[j] = value pr_err[j] = math.sqrt(y[j]) y = y / total * d_max / len(r) # Perform fit pr = Invertor() pr.d_max = d_max pr.alpha = 0 pr.x = r pr.y = y pr.err = pr_err out, cov = pr.pr_fit() for i in range(len(out)): print("%g +- %g" % (out[i], math.sqrt(cov[i][i]))) # Show input P(r) title = "Pr" new_plot = Data1D(pr.x, pr.y, dy=pr.err) new_plot.name = "P_{obs}(r)" new_plot.xaxis("\\rm{r}", 'A') new_plot.yaxis("\\rm{P(r)} ", "cm^{-3}") new_plot.group_id = "P_{obs}(r)" new_plot.id = "P_{obs}(r)" new_plot.title = title self.parent.update_theory(data_id=self.data_id, theory=new_plot) wx.PostEvent(self.parent, NewPlotEvent(plot=new_plot, title=title)) # Show P(r) fit self.show_pr(out, pr) # Show I(q) fit q = pylab.arange(0.001, 0.1, 0.01 / 51.0) self.show_iq(out, pr, q)
if len(toks) > 2: err = float(toks[2]) else: if scale is None: scale = 0.05 * math.sqrt(test_y) #scale = 0.05/math.sqrt(y) min_err = 0.01 * y err = scale * math.sqrt(test_y) + min_err #err = 0 data_x = np.append(data_x, test_x) data_y = np.append(data_y, test_y) data_err = np.append(data_err, err) except: logger.error(sys.exc_value) return data_x, data_y, data_err if __name__ == "__main__": invert = Invertor() x, y, erro = load("test/Cyl_A_D102.txt") invert.d_max = 102.0 invert.nfunc = 10 invert.x = x invert.y = y invert.err = erro # Testing estimator est = NTermEstimator(invert) print(est.num_terms())
def _create_file_pr(self, data): """ Create and prepare invertor instance from a file data set. :param path: path of the file to read in """ # Reset the status bar so that we don't get mixed up # with old messages. #TODO: refactor this into a proper status handling wx.PostEvent(self.parent, StatusEvent(status='')) try: class FileData(object): x = None y = None err = None path = None def __init__(self, path): self.path = path self._current_file_data = FileData(data.path) self._current_file_data.x = data.x self._current_file_data.y = data.y self._current_file_data.err = data.dy x, y, err = data.x, data.y, data.dy except: load_error(sys.exc_value) return None # If the file contains no data, just return if x is None or len(x) == 0: load_error("The loaded file contains no data") return None # If we have not errors, add statistical errors if y is not None: if err is None or np.all(err) == 0: err = np.zeros(len(y)) scale = None min_err = 0.0 for i in range(len(y)): # Scale the error so that we can fit over several decades of Q if scale is None: scale = 0.05 * math.sqrt(y[i]) min_err = 0.01 * y[i] err[i] = scale * math.sqrt(math.fabs(y[i])) + min_err message = "The loaded file had no error bars, " message += "statistical errors are assumed." wx.PostEvent(self.parent, StatusEvent(status=message)) try: # Get the data from the chosen data set and perform inversion pr = Invertor() pr.d_max = self.max_length pr.alpha = self.alpha pr.q_min = self.q_min pr.q_max = self.q_max pr.x = x pr.y = y pr.err = err pr.est_bck = self.est_bck pr.slit_height = self.slit_height pr.slit_width = self.slit_width return pr except: load_error(sys.exc_value) return None