示例#1
0
def assess_sample_stability(end_cutoff=3):
    ip = get_ipython()
    rowavg = ip.user_ns['_rowavg']
    tab = [['Sample name', 'Distance', 'Slope of autocorrelation function', 'Stability']]
    plt.figure()
    for sn in sorted(rowavg):
        for dist in sorted(rowavg[sn]):
            rowavg_rescaled = rowavg[sn][dist] / rowavg[sn][dist].mean()
            rowavg_std = rowavg_rescaled.std() * np.ones_like(rowavg_rescaled)
            try:
                A, B, stat = nonlinear_leastsquares(np.arange(len(rowavg_rescaled)), rowavg_rescaled, rowavg_std,
                                                    lambda x, a, b: a * x + b, [0, 0])
                problematic = (A.val > A.err * 3)
            except TypeError:
                A = 'N/A'
                problematic = 2
            tab.append([sn, '%.2f' % dist, A, ["\u2713", "\u2718\u2718\u2718\u2718\u2718", '\u274e'][problematic]])
            plt.errorbar(np.arange(len(rowavg_rescaled)), rowavg_rescaled,
                         label=sn + ' %.2f mm' % dist)  # ,diags_std[1:])
    plt.xlabel('Separation in time (FSN units)')
    plt.ylabel('Average discrepancy between curves')
    plt.legend(loc='best')
    tab = ipy_table.IpyTable(tab)
    tab.apply_theme('basic')
    display(tab)
    plt.show()
示例#2
0
文件: curve.py 项目: awacha/sastool
    def fit(self, function, parameters_init, xname='x', yname='y', dyname='dy', **kwargs):
        """Non-linear least-squares fit to the dataset.

        Inputs:
        -------
            `function`: a callable, corresponding to the function to be fitted.
                Should have the following signature::

                    >>> function(x, par1, par2, par3, ...)

                where ``par1``, ``par2``, etc. are the values of the parameters
                to be fitted.

            `parameters_init`: a sequence (tuple or list) of the initial values
                for the parameters to be fitted. Their ordering should be the
                same as that of the arguments of `function`

            other keyword arguments are given to `nonlinear_leastsquares()`
                without any modification.

        Outputs:
        --------
            `par1_fit`, `par2_fit`, etc.: the best fitting values of the parameters.
            `statdict`: a dictionary with various status data, such as `R2`, `DoF`,
                `Chi2_reduced`, `Covariance`, `Correlation_coeffs` etc. For a full
                list, see the help of `sastool.misc.easylsq.nlsq_fit()`
            `func_value`: the value of the function at the best fitting parameters,
                represented as an instance of the same class as this curve.

        Notes:
        ------
            The fitting itself is done via sastool.misc.easylsq.nonlinear_leastsquares()
        """
        obj = self.sanitize(fieldname=yname).sanitize(fieldname=xname)
        if not hasattr(obj, dyname):
            dy = np.ones(len(obj), np.double) * np.nan
        else:
            dy = getattr(obj, dyname)
        ret = nonlinear_leastsquares(getattr(obj, xname), getattr(
            obj, yname), dy, function, parameters_init, **kwargs)
        funcvalue = type(self)(getattr(obj, xname), ret[-1]['func_value'])
        return ret + tuple([funcvalue])