示例#1
0
    def _get_stack_channels(self):

        stack = None
        first = True

        for i, feat in enumerate(self.data.paths_map.keys()):

            self.feature_ras = self.data.paths_map[feat]

            with rasopen(self.feature_ras, mode='r') as src:
                arr = src.read()
                self.raster_geo = src.meta.copy()
                if self.saved_array:
                    break
            if first:
                first_geo = deepcopy(self.raster_geo)
                empty = zeros((len(self.data.paths_map.keys()), arr.shape[1], arr.shape[2]), float16)
                stack = empty
                stack[i, :, :] = self.normalize_image_channel(arr)
                first = False
            else:
                try:
                    stack[i, :, :] = self.normalize_image_channel(arr)
                except ValueError:
                    arr = warp_single_image(self.feature_ras, first_geo)
                    stack[i, :, :] = self.normalize_image_channel(arr)

        return stack
def concatenate_fmasks(image_directory,
                       class_mask,
                       class_mask_geo,
                       nodata=0,
                       target_directory=None):
    ''' ``Fmasks'' are masks of clouds and water. We don't want clouds/water in
    the training set, so this function gets all the fmasks for a landsat
    scene (contained in image_directory), and merges them into one raster. 
    They may not be the same size, so warp_vrt is used to make them align. 
    '''
    class_mask = class_mask.copy()
    paths = []
    for dirpath, dirnames, filenames in os.walk(image_directory):
        for f in filenames:
            for suffix in mask_rasters():
                if f.endswith(suffix):
                    pth = os.path.join(dirpath, f)
                    paths.append(pth)
    for fmask_file in paths:
        fmask, _ = load_raster(fmask_file)
        # clouds, water present where fmask == 1.
        try:
            class_mask = ma.masked_where(fmask == 1, class_mask)
        except (ValueError, IndexError) as e:
            fmask = warp_single_image(fmask_file, class_mask_geo)
            class_mask = ma.masked_where(fmask == 1, class_mask)

    return class_mask
def concatenate_fmasks_single_scene(class_labels, image_directory, target_date,
                                    class_mask_geo):
    date = None
    for d in os.listdir(image_directory):
        if os.path.isdir(os.path.join(image_directory, d)):
            try:
                date = _parse_landsat_capture_date(d)
            except Exception as e:
                print(e)
                continue
            if date == target_date:
                landsat_directory = d
                break
    class_mask = class_labels.copy()
    paths = []
    for dirpath, dirnames, filenames in os.walk(landsat_directory):
        for f in filenames:
            for suffix in mask_rasters():
                if f.endswith(suffix):
                    pth = os.path.join(dirpath, f)
                    paths.append(pth)
    for fmask_file in paths:
        fmask, _ = load_raster(fmask_file)
        # clouds, water present where fmask == 1.
        try:
            class_mask = ma.masked_where(fmask == 1, class_mask)
        except (ValueError, IndexError) as e:
            fmask = warp_single_image(fmask_file, class_mask_geo)
            class_mask = ma.masked_where(fmask == 1, class_mask)

    return class_mask
示例#4
0
def stack_rasters(paths_map, target_geo, target_shape):
    first = True
    stack = None
    num_rasters = 0
    for key in paths_map: num_rasters += len(paths_map[key])
    j = 0
    for feat in sorted(paths_map.keys()):  # ensures the stack is in the same order each time.
        # Ordering within bands is assured by sorting the list that
        # each band corresponding to, as that's sorting by date.
        feature_rasters = paths_map[feat]  # maps bands to their location in filesystem.
        for feature_raster in feature_rasters:
            with rasopen(feature_raster, mode='r') as src:
                arr = src.read()
            if first:
                stack = np.zeros((num_rasters, target_shape[1], target_shape[2]), np.uint16)
                stack[j, :, :] = arr
                j += 1
                first = False
            else:
                try:
                    stack[j, :, :] = arr
                    j += 1
                except ValueError:
                    arr = warp_single_image(feature_raster, target_geo)
                    stack[j, :, :] = arr
                    j += 1
    return stack
示例#5
0
def create_image_stack(paths_map):
    first = True
    stack = None
    j = 0
    num_rasters = 0
    for ls in paths_map.values():
        num_rasters += len(ls)
    print(num_rasters)
    for feat in sorted(paths_map.keys()):
        feature_rasters = paths_map[feat]
        for feature_raster in feature_rasters:
            if first:
                arr, target_geo = load_raster(feature_raster)
                stack = np.zeros((num_rasters, arr.shape[1], arr.shape[2]), np.uint16)
                stack[j, :, :] = arr
                j += 1
                first = False
            else:
                try:
                    arr = load_raster(feature_raster)
                    stack[j, :, :] = arr
                    j += 1
                except ValueError:
                    arr = warp_single_image(feature_raster, target_geo)
                    stack[j, :, :] = arr
                    j += 1
    return stack
示例#6
0
def _maybe_warp(feature_raster, target_geo, target_shape):
    arr, _ = load_raster(feature_raster)
    if arr.shape != target_shape:
        print("#####################")
        print(arr.shape)
        print(feature_raster, target_geo)
        arr = warp_single_image(feature_raster, target_geo)
        print(arr.shape)
    return arr, feature_raster
def extract_training_data_over_path_row(test_train_shapefiles,
                                        path,
                                        row,
                                        year,
                                        image_directory,
                                        training_data_root_directory,
                                        n_classes,
                                        assign_shapefile_class_code,
                                        preprocessing_func=None,
                                        tile_size=608,
                                        use_fmasks=False,
                                        use_cdl=False):
    if not isinstance(test_train_shapefiles, dict):
        raise ValueError("expected dict, got {}".format(
            type(test_train_shapefiles)))

    path_row_year = str(path) + '_' + str(row) + '_' + str(year)
    image_path = os.path.join(image_directory, path_row_year)
    if not os.path.isdir(image_path):
        download_from_pr(path, row, year, image_directory)
    image_path_maps = paths_map_multiple_scenes(image_path)
    mask_file = _random_tif_from_directory(image_path)
    mask, mask_meta = load_raster(mask_file)
    mask = np.zeros_like(mask).astype(np.int)
    if use_cdl:
        cdl_path = os.path.join(image_path, 'cdl_mask.tif')
        cdl_raster, cdl_meta = load_raster(cdl_path)
        if mask.shape != cdl_raster.shape:
            cdl_raster = warp_single_image(cdl_path, mask_meta)
        cdl_raster = np.swapaxes(cdl_raster, 0, 2)
    try:
        image_stack = create_image_stack(image_path_maps)
    except CRSError as e:
        print(e)
        return
    image_stack = np.swapaxes(image_stack, 0, 2)
    for key, shapefiles in test_train_shapefiles.items():
        if key.lower() not in ('test', 'train'):
            raise ValueError(
                "expected key to be one of case-insenstive {test, train},\
            got {}".format(key))
        training_data_directory = os.path.join(training_data_root_directory,
                                               key)
        class_labels = create_class_labels(shapefiles,
                                           assign_shapefile_class_code)
        if use_fmasks:
            class_labels = concatenate_fmasks(image_path, class_labels,
                                              mask_meta)
        class_labels = np.swapaxes(class_labels, 0, 2)
        class_labels = np.squeeze(class_labels)
        tiles_y, tiles_x = _target_indices_from_class_labels(
            class_labels, tile_size)
        _save_training_data_from_indices(image_stack, class_labels,
                                         training_data_directory, n_classes,
                                         tiles_x, tiles_y, tile_size)
def stack_images_from_list_of_filenames_sorted_by_date(filenames):
    filenames = sorted(filenames, key=lambda x: parse_date(x))
    dates = [parse_date(x) for x in filenames]
    # if len(filenames) > 16:
    #    filenames = filenames[:16]
    first = True
    image_stack = None
    i = 0
    n_bands = 7
    if not len(filenames):
        print('empty list of filenames')
        return (None, None, None, None)

    for filename in filenames:
        with rasopen(filename, 'r') as src:
            arr = src.read()
            meta = deepcopy(src.meta)
        if first:
            first = False
            image_stack = np.zeros((n_bands * len(filenames) + len(filenames),
                                    arr.shape[1], arr.shape[2]),
                                   dtype=np.int16)
            target_meta = deepcopy(meta)
            target_fname = filename
            image_stack[0:n_bands] = arr
            i += n_bands
        else:
            try:
                image_stack[i:i + n_bands] = arr
                i += n_bands
            except ValueError as e:
                arr = warp_single_image(filename, target_meta)
                image_stack[i:i + n_bands] = arr
                i += n_bands
    image_stack[-len(filenames):] = date_stack(dates, image_stack.shape)
    return image_stack, target_meta, target_fname, meta
示例#9
0
 def check_shape(self, var, path):
     if not var.shape == self.shape:
         new = warped_vrt.warp_single_image(image_path=path, profile=self.profile, resampling='nearest')
         return new
     else:
         return var
def extract_training_data_over_path_row_single_scene(
        test_train_shapefiles,
        path,
        row,
        year,
        image_directory,
        training_data_root_directory,
        n_classes,
        assign_shapefile_class_code,
        preprocessing_func=None,
        tile_size=608):
    if not isinstance(test_train_shapefiles, dict):
        raise ValueError("expected dict, got {}".format(
            type(test_train_shapefiles)))

    path_row_year = str(path) + '_' + str(row) + '_' + str(year)
    image_path = os.path.join(image_directory, path_row_year)
    if not os.path.isdir(image_path):
        download_from_pr(path, row, year, image_directory)
    image_path_maps = paths_mapping_single_scene(image_path)
    mask_file = _random_tif_from_directory(image_path)
    mask, mask_meta = load_raster(mask_file)
    mask = np.zeros_like(mask).astype(np.int)
    cdl_path = os.path.join(image_path, 'cdl_mask.tif')
    cdl_raster, cdl_meta = load_raster(cdl_path)
    if mask.shape != cdl_raster.shape:
        cdl_raster = warp_single_image(cdl_path, mask_meta)
    cdl_raster = np.swapaxes(cdl_raster, 0, 2)
    for key, shapefiles in test_train_shapefiles.items():
        try:
            class_labels = create_class_labels(shapefiles,
                                               assign_shapefile_class_code,
                                               mask_file)
        except TypeError as e:
            print(image_directory)
            download_from_pr(path, row, year, image_directory)
            print(e)
        if key.lower() not in ('test', 'train'):
            raise ValueError(
                "expected key to be one of case-insenstive {test, train},\
            got {}".format(key))
        begin = datetime.date(year=year, month=6, day=15)
        end = datetime.date(year=year, month=9, day=1)
        for date, paths_map in image_path_maps.items():
            if date < begin or date > end:
                print('skipping:', date)
                continue
            try:
                date_raster = _days_from_january_raster(
                    date, target_shape=mask.shape)
                date_raster = np.swapaxes(date_raster, 0, 2)
                image_stack = stack_rasters_single_scene(
                    paths_map, target_geo=mask_meta, target_shape=mask.shape)
                image_stack = np.swapaxes(image_stack, 0, 2)
                image_stack = np.dstack((image_stack, date_raster))
            except RasterioIOError as e:
                print("Redownload images for", path_row_year)
                print(e)
                return
            training_data_directory = os.path.join(
                training_data_root_directory, key)
            class_labels_single_scene = concatenate_fmasks_single_scene(
                class_labels, image_path, date, mask_meta)
            class_labels_single_scene = np.swapaxes(class_labels_single_scene,
                                                    0, 2)
            class_labels_single_scene = np.squeeze(class_labels_single_scene)
            tiles_y, tiles_x = _target_indices_from_class_labels(
                class_labels_single_scene, tile_size)
            _save_training_data_from_indices(image_stack,
                                             class_labels_single_scene,
                                             cdl_raster,
                                             training_data_directory,
                                             n_classes, tiles_x, tiles_y,
                                             tile_size)
示例#11
0
def _maybe_warp(feature_raster, target_geo, target_shape):
    arr, _ = load_raster(feature_raster)
    if not arr.shape == target_shape:
        arr = warp_single_image(feature_raster, target_geo)
    return arr, feature_raster
示例#12
0
def extract_training_data_over_path_row(test_train_shapefiles,
                                        path,
                                        row,
                                        year,
                                        image_directory,
                                        training_data_root_directory,
                                        n_classes,
                                        assign_shapefile_class_code,
                                        path_map_func=None,
                                        preprocessing_func=None,
                                        tile_size=608):

    if path_map_func is None:
        path_map_func = paths_map_multiple_scenes

    if not isinstance(test_train_shapefiles, dict):
        raise ValueError("expected dict, got {}".format(
            type(test_train_shapefiles)))

    path_row_year = str(path) + '_' + str(row) + '_' + str(year)
    image_path = os.path.join(image_directory, path_row_year)
    if not os.path.isdir(image_path):
        download_from_pr(path, row, year, image_directory)
    image_path_maps = path_map_func(image_path)
    mask_file = _random_tif_from_directory(image_path)
    mask, mask_meta = load_raster(mask_file)
    mask = np.zeros_like(mask).astype(np.int)
    cdl_path = os.path.join(image_path, 'cdl_mask.tif')
    cdl_raster, cdl_meta = load_raster(cdl_path)
    if mask.shape != cdl_raster.shape:
        cdl_raster = warp_single_image(cdl_path, mask_meta)
    cdl_raster = np.swapaxes(cdl_raster, 0, 2)
    try:
        image_stack = stack_rasters_multiprocess(image_path_maps,
                                                 target_geo=mask_meta,
                                                 target_shape=mask.shape)
        image_stack = np.swapaxes(image_stack, 0, 2)
    except RasterioIOError as e:
        print("Redownload images for", path_row_year)
        print(e)
        return
    for key, shapefiles in test_train_shapefiles.items():
        if key.lower() not in ('test', 'train'):
            raise ValueError(
                "expected key to be one of case-insenstive {test, train},\
            got {}".format(key))

        training_data_directory = os.path.join(training_data_root_directory,
                                               key)
        first = True
        class_labels = None
        for f in shapefiles:
            class_code = assign_shapefile_class_code(f)
            print(f, class_code)
            out, _ = mask_raster_to_shapefile(f,
                                              mask_file,
                                              return_binary=False)
            if first:
                class_labels = out
                class_labels[~class_labels.mask] = class_code
                first = False
            else:
                class_labels[~out.mask] = class_code
        class_labels = concatenate_fmasks(image_path, class_labels, mask_meta)
        class_labels = np.swapaxes(class_labels, 0, 2)
        class_labels = np.squeeze(class_labels)
        tiles_y, tiles_x = _target_indices_from_class_labels(
            class_labels, tile_size)
        _save_training_data_from_indices(image_stack, class_labels, cdl_raster,
                                         training_data_directory, n_classes,
                                         tiles_x, tiles_y, tile_size)