示例#1
0
def histMedian(h, bins):

    # Assume you only want to operate on the last dimension
    nx, ny = h.shape
    median, sigL, sigR, var = np.zeros((4,nx))
    binMids = getMids(bins, infvalue=100)
    for i in range(nx):
        median[i] = histPercentile(h[i], 50, binMids)
        sigL[i]   = histPercentile(h[i], 16, binMids)
        sigR[i]   = histPercentile(h[i], 84, binMids)
        var[i]    = histVar(h[i], binMids)

    return median, sigL, sigR, var
示例#2
0
        try:  i = paramList.index([config, str(emin), str(emax)])
        except ValueError:
            found = False
        # If it exists, option to overwrite
        if found and not args.overwrite:
            print 'Info for', config, emin, emax, 'already exists...'
            continue
        if found and args.overwrite:
            table.remove(table[i])

        # Calculate information for energy range
        idx0 = np.where(args.eList==emin)[0][0]
        idx1 = np.where(args.eList==emax)[0][0]
        h = ehists[idx0:idx1].sum(axis=0)
        emids  = (ebins[:-1] + ebins[1:]) / 2.
        median = histPercentile(h, 50, emids)
        sigL   = histPercentile(h, 16, emids)
        sigR   = histPercentile(h, 84, emids)
        var = histVar(h, emids)
        counts = h.sum()

        # Append to file
        newLine = [config, emin, emax, median, sigL, sigR, var, counts]
        newLine = ['%s' % i for i in newLine]
        table.append(newLine)

        # Write as you go
        lines = [' '.join(line) for line in table]
        lines = [line + '\n' for line in lines]
        lines.sort()