save_arch(model, arch_path)  # モデルを保存しておく

# トレーニングの準備
checkpoint_collback = ModelCheckpoint(filepath=weights_path,
                                      monitor='val_loss',
                                      save_best_only=True,
                                      mode='auto')

change_lr = LearningRateScheduler(lambda epoch: float(learning_rates[epoch]))

flip_gen = FlippedImageDataGenerator()

sgd = SGD(lr=lr, momentum=momentum, nesterov=nesterov)
model.compile(loss=loss_method, optimizer=sgd)

# トレーニング
start_time = time.time()
print('start_time: %s' % (datetime.now()))
hist = model.fit_generator(flip_gen.flow(X_train, y_train),
                           samples_per_epoch=X_train.shape[0],
                           nb_epoch=nb_epoch,
                           validation_data=(X_val, y_val),
                           callbacks=[checkpoint_collback, change_lr])
print('end_time: %s, duracion(min): %d' %
      (datetime.now(), int(time.time() - start_time) / 60))

# プロットしてファイルとして保存する
# plot_hist(hist, model_name)
# plot_model_arch(model, model_name)
save_history(hist, model_name)
示例#2
0
    save_arch(model, arch_path)  # モデルを保存しておく

    # トレーニングの準備
    sgd = SGD(lr=start, momentum=momentum, nesterov=nesterov)
    model.compile(loss=loss_method, optimizer=sgd)
    #plot(model, to_file="model_{}.png".format(cols[0]), show_shapes=True)

    flipgen = FlippedImageDataGenerator()
    flipgen.flip_indices = setting['flip_indices']
    early_stop = EarlyStopping(patience=patience)
    learning_rates = np.linspace(start, stop, nb_epoch)
    change_lr = LearningRateScheduler(
        lambda epoch: float(learning_rates[epoch]))
    weights_path = 'model/' + model_name + '-' + setting[
        'id'] + '-weights-' + str(nb_epoch) + '.hdf5'
    checkpoint_collback = ModelCheckpoint(filepath=weights_path,
                                          monitor='val_loss',
                                          save_best_only=True,
                                          mode='auto')

    print("Training model for columns {} for {} epochs".format(cols, nb_epoch))

    # トレーニング実施
    hist = model.fit_generator(
        flipgen.flow(X_train, y_train),
        samples_per_epoch=X_train.shape[0],
        nb_epoch=nb_epoch,
        validation_data=(X_val, y_val),
        callbacks=[checkpoint_collback, change_lr, early_stop])
    save_history(hist, model_name + '-' + setting['id'])