示例#1
0
def evaluate_det(
    ann_file: Union[str, List[Frame]],
    pred_file: Union[str, List[Frame]],
    cfg_path: str,
    out_dir: str = "none",
    nproc: int = 4,
) -> Dict[str, float]:
    """Load the ground truth and prediction results.

    Args:
        ann_file: path to the ground truth annotations. "*.json"
        pred_file: path to the prediciton results in BDD format. "*.json"
        cfg_path: path to the config file
        out_dir: output_directory
        nproc: processes number for loading jsons

    Returns:
        dict: detection metric scores

    """
    # Convert the annotation file to COCO format
    if isinstance(ann_file, str):
        ann_frames = load(ann_file, nproc)
    else:
        ann_frames = ann_file
    ann_frames = sorted(ann_frames, key=lambda frame: frame.name)

    categories, name_mapping, ignore_mapping = load_coco_config(
        mode="det",
        filepath=cfg_path,
    )
    ann_coco = scalabel2coco_detection(SHAPE, ann_frames, categories,
                                       name_mapping, ignore_mapping)
    coco_gt = COCOV2(None, ann_coco)

    # Load results and convert the predictions
    if isinstance(pred_file, str):
        pred_frames = load(pred_file, nproc)
    else:
        pred_frames = pred_file
    pred_frames = sorted(pred_frames, key=lambda frame: frame.name)

    pred_res = scalabel2coco_detection(SHAPE, pred_frames, categories,
                                       name_mapping,
                                       ignore_mapping)["annotations"]
    coco_dt = coco_gt.loadRes(pred_res)

    cat_ids = coco_dt.getCatIds()
    cat_names = [cat["name"] for cat in coco_dt.loadCats(cat_ids)]

    img_ids = sorted(coco_gt.getImgIds())
    ann_type = "bbox"
    coco_eval = COCOeval(coco_gt, coco_dt, ann_type)
    coco_eval.params.imgIds = img_ids

    return evaluate_workflow(coco_eval, cat_ids, cat_names, out_dir)
示例#2
0
def main() -> None:
    """Main function."""
    args = parse_args()
    assert args.mode in ["det", "box_track", "ins_seg", "seg_track"]
    categories, name_mapping, ignore_mapping = load_coco_config(
        mode=args.mode,
        filepath=args.config,
        ignore_as_class=args.ignore_as_class,
    )

    shape = (args.height, args.width)
    if args.only_mask:
        assert args.mode in ["ins_seg", "seg_track"]
        convert_function = dict(
            ins_seg=bitmask2coco_ins_seg,
            seg_track=bitmask2coco_seg_track,
        )[args.mode]
        coco = convert_function(
            args.label,
            shape,
            list_files(args.label, suffix=".png"),
            categories,
            args.mask_mode,
            args.nproc,
        )
    else:
        if args.mode in ["det", "box_track"]:
            convert_func = dict(
                det=scalabel2coco_detection,
                box_track=scalabel2coco_box_track,
            )[args.mode]
        else:
            convert_func = partial(
                dict(
                    ins_seg=bdd100k2coco_ins_seg,
                    seg_track=bdd100k2coco_seg_track,
                )[args.mode],
                mask_base=args.mask_base,
                mask_mode=args.mask_mode,
                nproc=args.nproc,
            )
        frames = start_converting(args)
        coco = convert_func(
            shape=shape,
            frames=frames,
            categories=categories,
            name_mapping=name_mapping,
            ignore_mapping=ignore_mapping,
            ignore_as_class=args.ignore_as_class,
            remove_ignore=args.remove_ignore,
        )

    logger.info("Saving converted annotations to disk...")
    with open(args.output, "w") as f:
        json.dump(coco, f)
    logger.info("Finished!")
示例#3
0
文件: ins_seg.py 项目: guarin/bdd100k
def evaluate_ins_seg(
    ann_base: str,
    pred_base: str,
    pred_score_file: str,
    cfg_path: str,
    out_dir: str = "none",
) -> Dict[str, float]:
    """Load the ground truth and prediction results.

    Args:
        ann_base: path to the ground truth bitmasks folder.
        pred_base: path to the prediciton bitmasks folder.
        pred_score_file: path tothe prediction scores.
        cfg_path: path to the config file.
        out_dir: output_directory.

    Returns:
        dict: detection metric scores
    """
    categories, _, _ = load_coco_config("ins_seg", cfg_path)
    bdd_eval = BDDInsSegEval(ann_base, pred_base, pred_score_file)
    cat_ids = [int(category["id"]) for category in categories]
    cat_names = [str(category["name"]) for category in categories]
    return evaluate_workflow(bdd_eval, cat_ids, cat_names, out_dir)
示例#4
0
def segtrack_to_bitmasks(
    frames: List[Frame],
    out_base: str,
    ignore_as_class: bool = False,
    remove_ignore: bool = False,
    nproc: int = 4,
) -> None:
    """Converting segmentation tracking poly2d to bitmasks."""
    frames_list = group_and_sort(frames)
    categories, name_mapping, ignore_mapping = load_coco_config(
        mode="track",
        filepath=DEFAULT_COCO_CONFIG,
        ignore_as_class=ignore_as_class,
    )

    out_paths: List[str] = []
    colors_list: List[List[np.ndarray]] = []
    poly2ds_list: List[List[List[Poly2D]]] = []

    logger.info("Preparing annotations for SegTrack to Bitmasks")

    for video_anns in tqdm(frames_list):
        global_instance_id: int = 1
        instance_id_maps: Dict[str, int] = dict()

        video_name = video_anns[0].video_name
        out_dir = os.path.join(out_base, video_name)
        if not os.path.isdir(out_dir):
            os.makedirs(out_dir)

        for image_anns in video_anns:
            # Bitmask in .png format
            image_name = image_anns.name.replace(".jpg", ".png")
            image_name = os.path.split(image_name)[-1]
            out_path = os.path.join(out_dir, image_name)
            out_paths.append(out_path)

            colors: List[np.ndarray] = []
            poly2ds: List[List[Poly2D]] = []
            colors_list.append(colors)
            poly2ds_list.append(poly2ds)

            labels_ = image_anns.labels
            if labels_ is None or len(labels_) == 0:
                continue

            # Scores higher, rendering later
            if labels_[0].score is not None:
                labels_ = sorted(labels_, key=lambda label: float(label.score))

            for label in labels_:
                if label.poly2d is None:
                    continue

                category_ignored, category_id = process_category(
                    label.category,
                    categories,
                    name_mapping,
                    ignore_mapping,
                    ignore_as_class=ignore_as_class,
                )
                if category_ignored and remove_ignore:
                    continue

                instance_id, global_instance_id = get_bdd100k_instance_id(
                    instance_id_maps, global_instance_id, str(label.id))

                color = set_instance_color(label, category_id, instance_id,
                                           category_ignored)
                colors.append(color)
                poly2ds.append(label.poly2d)

    logger.info("Start Conversion for SegTrack to Bitmasks")
    frames_to_masks(nproc, out_paths, colors_list, poly2ds_list)
示例#5
0
def insseg_to_bitmasks(
    frames: List[Frame],
    out_base: str,
    ignore_as_class: bool = False,
    remove_ignore: bool = False,
    nproc: int = 4,
) -> None:
    """Converting instance segmentation poly2d to bitmasks."""
    os.makedirs(out_base, exist_ok=True)

    categories, name_mapping, ignore_mapping = load_coco_config(
        mode="track",
        filepath=DEFAULT_COCO_CONFIG,
        ignore_as_class=ignore_as_class,
    )

    out_paths: List[str] = []
    colors_list: List[List[np.ndarray]] = []
    poly2ds_list: List[List[List[Poly2D]]] = []

    logger.info("Preparing annotations for InsSeg to Bitmasks")

    for image_anns in tqdm(frames):
        ann_id = 0

        # Bitmask in .png format
        image_name = image_anns.name.replace(".jpg", ".png")
        image_name = os.path.split(image_name)[-1]
        out_path = os.path.join(out_base, image_name)
        out_paths.append(out_path)

        colors: List[np.ndarray] = []
        poly2ds: List[List[Poly2D]] = []
        colors_list.append(colors)
        poly2ds_list.append(poly2ds)

        labels_ = image_anns.labels
        if labels_ is None or len(labels_) == 0:
            continue

        # Scores higher, rendering later
        if labels_[0].score is not None:
            labels_ = sorted(labels_, key=lambda label: float(label.score))

        for label in labels_:
            if label.poly2d is None:
                continue

            category_ignored, category_id = process_category(
                label.category,
                categories,
                name_mapping,
                ignore_mapping,
                ignore_as_class=ignore_as_class,
            )
            if remove_ignore and category_ignored:
                continue

            ann_id += 1
            color = set_instance_color(label, category_id, ann_id,
                                       category_ignored)
            colors.append(color)
            poly2ds.append(label.poly2d)

    logger.info("Start conversion for InsSeg to Bitmasks")
    frames_to_masks(nproc, out_paths, colors_list, poly2ds_list)