def extractFeaturesWavelet(data, scales=[2, 4, 8, 16, 32], Class=0): features = [] nObs, nSamp, nCols = data.shape oClass = np.ones((nObs, 1)) * Class for i in range(nObs): scalo_features = np.array([]) for c in range(nCols): scalo, scales = scalogram.scalogramCWT(data[i, :, c], scales) scalo_features = np.append(scalo_features, scalo) features.append(scalo_features) return (np.array(features), oClass)
def extract_features_wavelet(data, empty_windows, scales=[2, 4, 8, 16, 32]): features = [] n_obs_windows, n_samples, n_cols = data.shape for i in range(n_obs_windows): if i in empty_windows: continue scalogram_features = np.array([]) for c in range(n_cols): scalo, fscales = scalogram.scalogramCWT(data[i, :, c], scales) scalogram_features = np.append(scalogram_features, scalo) features.append(scalogram_features) return np.array(features)
waitforEnter() # -13- # import scalogram for a in range(0, 40, 1): plt.clf() plt.figure(50) x = data1[:, a] scales = np.arange(1, 50) plt.ion() cwt = scalogram.CWTfft(x, scales) plt.imshow(abs(cwt), cmap=plt.cm.Blues, aspect='auto') plt.show() plt.savefig("../imagens/scalogram/scalogramfft" + str(a) + ".png") plt.clf() plt.figure(51) S, scales = scalogram.scalogramCWT(x, scales) plt.plot(scales, S) plt.show() plt.savefig("../imagens/scalogram/scalogramCWT" + str(a) + ".png") waitforEnter() # End waitforEnter()
f, psd = signal.periodogram(x) plt.plot(1 / f[:50], psd[:50]) plt.show() # -13- # import scalogram x = data1[:, 2] scales = np.arange(1, 50) plt.ion() plt.figure(11) cwt = scalogram.CWTfft(x, scales) plt.imshow(abs(cwt), cmap=plt.cm.Blues, aspect='auto') plt.show() plt.figure(12) S, scales = scalogram.scalogramCWT(x, scales) plt.plot(scales, S) plt.show() # -14- # # features M1 = np.mean(data1, axis=0) Md1 = np.median(data1, axis=0) V1 = np.var(data1, axis=0) S1 = stats.skew(data1) K1 = stats.kurtosis(data1) p = [25, 50, 75, 90, 95] Pr1 = np.array(np.percentile(data1, p, axis=0)).T M2 = np.mean(data2, axis=0) Md2 = np.median(data2, axis=0) V2 = np.var(data2, axis=0)