def make_target_env_with_baseline( observation_scaling=1.0, # 10.0 ego_starting_distance=150.0): return factored_gym.FactoredGym( road.RoadProcess(ego_starting_distance=ego_starting_distance), road.RoadObserver(observation_scaling), road.RoadTerminator(time_limit=3 * 60), road.RoadGoalRewarder(), [])
def __init__(self, env_config): observation_scaling = 1.0 # 10.0 ego_starting_distance = 600.0 super().__init__( road.RoadProcess(ego_starting_distance=ego_starting_distance), road.RoadObserver(observation_scaling), road.RoadTerminator(time_limit=3 * 60), road.RoadRewarder(), [])
def __init__(self, env_config): observation_scaling = 1.0 # 10.0 ego_starting_distance = 5.0 super().__init__( road.RoadProcess(ego_starting_distance=ego_starting_distance), road.RoadObserver(observation_scaling), road.RoadTerminator(time_limit=5 * 60), road.RoadGoalRewarder(), [factored_gym.ActionCenterer([.001, 5], [0, 0])])
def __init__(self, env_config=None): observation_scaling = 1.0 # 10.0 ego_starting_distance = 30.0 # scenario_file = "/home/pgraf/work/cavs/CarlaProjects/carla-collect-2_28_20/./docs/scenarios/town01/scenario_009.json" #13=has intersection, 9=turn, no intersection # process = RoadProcessOnCarlaMap(scenario_file, ego_starting_distance=ego_starting_distance, traffic_density=0.00, target_inset=15) #0.02 # process =road.RoadProcess(ego_starting_distance=ego_starting_distance), # scenario_file = "/home/pgraf/work/cavs/CarlaProjects/cavs-environments_k_road_roadmaker/cavs_environments/vehicle/k_road/scenario/road/example/multi_route_scenario_000b.json" # Learned to drive this with lidar (even w/out vehicle state in obs) scenario_file = "/home/pgraf/work/cavs/CarlaProjects/cavs-environments_roadmaker-clean/cavs_environments/vehicle/k_road/scenario/road/example/multi_route_scenario_town01_all.json" route_num = 7 # scenario_file = "/home/pgraf/work/cavs/CarlaProjects/cavs-environments_roadmaker-clean/cavs_environments/vehicle/k_road/scenario/road/example/multi_route_scenario_town04_merge.json" # route_num = 0 process = KRoadProcessOnCarlaMap( scenario_file, traffic_density=0.00, target_inset=70, ego_starting_distance=ego_starting_distance, fixed_route_num=route_num) # process = KRoadCarlaTwinRoadProcess(scenario_file, mode=KCModes.K0, traffic_density=0.00, target_inset=0, # ego_starting_distance=ego_starting_distance, fixed_route_num = route_num) # speed_mean=12, super().__init__( process, # road.RoadObserver(observation_scaling), RoadOccupancyGridObserver(observation_scaling, grid_length=9, grid_width=5), # RoadOccupancyGridObserver(observation_scaling, grid_length = 18, grid_width = 10), #, frames_to_observe=1), road.RoadTerminator(time_limit=60), # (time_limit=3 * 60), road.RoadRewarder(), # road.RoadOccupancyGridRewarder() )
def __init__(self, env_config=None): observation_scaling = 1.0 # 10.0 ego_starting_distance = 2000.0 print("env_config", env_config) if "use_factored_obs" in env_config and env_config['use_factored_obs']: obs_config = env_config['obs_config'] observer = FactoredRoadObserver(obs_config) else: observer = road.RoadObserver(observation_scaling) # RoadOccupancyGridObserver(observation_scaling, grid_length = 9, grid_width = 5), # RoadOccupancyGridObserver(observation_scaling, grid_length = 18, grid_width = 10), #, frames_to_observe=1), scenario_file = "/home/pgraf/work/cavs/CarlaProjects/cavs-environments_roadmaker-clean/cavs_environments/vehicle/k_road/scenario/road/example/multi_route_scenario_town04_jct.json" scenario = "cross_intersection" with_carla = False if "scenario" in env_config: scenario = env_config['scenario'] if "with_carla" in env_config: with_carla = env_config['with_carla'] if scenario == "curvy_road": bot_routes = None ego_routes = [2] traffic_density = 0 target_inset = 20 ego_starting_distance = 65.0 elif scenario == "avoid_bots": bot_routes = [1] ego_routes = [1] traffic_density = 3 target_inset = 5 ego_starting_distance = 2000.0 elif scenario == "cross_intersection": bot_routes = [1] ego_routes = [0] traffic_density = 12 target_inset = 5 ego_starting_distance = 2000.0 # scenario_file = "/home/pgraf/work/cavs/CarlaProjects/carla-collect-2_28_20/./docs/scenarios/town01/scenario_009.json" #13=has intersection, 9=turn, no intersection # process = RoadProcessOnCarlaMap(scenario_file, ego_starting_distance=ego_starting_distance, traffic_density=0.00, target_inset=15) #0.02 # process =road.RoadProcess(ego_starting_distance=ego_starting_distance), # scenario_file = "/home/pgraf/work/cavs/CarlaProjects/cavs-environments_k_road_roadmaker/cavs_environments/vehicle/k_road/scenario/road/example/multi_route_scenario_000b.json" # Learned to drive this with lidar (even w/out vehicle state in obs) # scenario_file = "/home/pgraf/work/cavs/CarlaProjects/cavs-environments_roadmaker-clean/cavs_environments/vehicle/k_road/scenario/road/example/multi_route_scenario_town01_all-nobndry.json" # route_num = 7 # scenario_file = "/home/pgraf/work/cavs/CarlaProjects/cavs-environments_roadmaker-clean/cavs_environments/vehicle/k_road/scenario/road/example/multi_route_scenario_town04_merge.json" # scenario_file = "/home/pgraf/work/cavs/CarlaProjects/cavs-environments_roadmaker-clean/cavs_environments/vehicle/k_road/scenario/road/example/multi_route_scenario_town04_local.json" route_num = 1 ## only draw this route even though there are more "paths" # route_num = None ## draws all routes, ego goes on 0, no control over which that is if not with_carla: process = KRoadProcessOnCarlaMap( scenario_file, traffic_density=traffic_density, speed_mean=8, target_inset=target_inset, ego_starting_distance=ego_starting_distance, ego_routes=ego_routes, bot_routes=bot_routes) else: process = KRoadCarlaTwinRoadProcess( scenario_file, mode=KCModes.KC, traffic_density=traffic_density, speed_mean=8, target_inset=target_inset, ego_starting_distance=ego_starting_distance, ego_routes=ego_routes, bot_routes=bot_routes) # process = KRoadCarlaTwinRoadProcess(scenario_file, mode=KCModes.K0, traffic_density=0.00, target_inset=0, # ego_starting_distance=ego_starting_distance, fixed_route_num = route_num) # speed_mean=12, # target_inset = 70 super().__init__( process, observer, road.RoadTerminator(time_limit=60), # (time_limit=3 * 60), road.RoadRewarder(), # road.RoadOccupancyGridRewarder() )