def main(): game_state = sample_game_states[18] num_simulations = 100 ucb_constant = 0.1 player = UCTPlayer(ucb_const=ucb_constant, num_samples=1, num_simulations=num_simulations) root_node = MCNode(game_state=game_state) mc_tree = MCTree(root_node=root_node) for sim_num in range(1, player.num_simulations + 1): selected_node = player.selection(mc_tree) rewards = player.simulation(selected_node) mc_tree.backup_rewards(leaf_node=selected_node, rewards=rewards) mc_tree.visualize_tree(ucb=player.ucb_const, filename="img_{}".format(sim_num)) filenames = ["img_{}.png".format(i) for i in range(player.num_simulations, 0, -1)] gif_name = "Gif_test.gif" duration = 0.2 make_gif(filenames=filenames, outputname=gif_name, duration=duration) im = Image.open(gif_name) frames = [frame.copy() for frame in ImageSequence.Iterator(im)] frames.reverse() frames[0].save('reversed.gif', save_all=True, append_images=frames[1:])
def expand(self, mc_tree, node): not_visited_actions = set(node.game_state["possible_actions"]) for child in node.children: not_visited_actions.remove(child.previous_action) chosen_action = random.choice(tuple(not_visited_actions)) new_state = self.get_new_state(game_state=node.game_state, action=chosen_action) new_node = MCNode(parent=node, game_state=new_state, previous_action=chosen_action) mc_tree.add_node(node=new_node, parent_node=node) return new_node
def uct_search(self, game_state): root_node = MCNode(game_state=game_state) mc_tree = MCTree(root_node=root_node) for sim_num in range(1, self.num_simulations + 1): selected_node = self.selection(mc_tree) rewards = self.simulation(selected_node) mc_tree.backup_rewards(leaf_node=selected_node, rewards=rewards) results = [] for child in mc_tree.root_node.children: results.append((child.previous_action, child.visits, child.get_average_reward(root_node.current_player))) return results
def main(): sim_player_list = [ NNPlayer( game_mode_nn='../players/models/bigger_classifier200.hdf5', partner_nn='../players/models/partner_model_wider_data_2.hdf5', solo_nn='../players/models/solo_model_wider_data_10.hdf5', wenz_nn='../players/models/wenz_model_wider_data_10.hdf5'), NNPlayer( game_mode_nn='../players/models/bigger_classifier200.hdf5', partner_nn='../players/models/partner_model_wider_data_2.hdf5', solo_nn='../players/models/solo_model_wider_data_10.hdf5', wenz_nn='../players/models/wenz_model_wider_data_10.hdf5'), NNPlayer( game_mode_nn='../players/models/bigger_classifier200.hdf5', partner_nn='../players/models/partner_model_wider_data_2.hdf5', solo_nn='../players/models/solo_model_wider_data_10.hdf5', wenz_nn='../players/models/wenz_model_wider_data_10.hdf5'), NNPlayer( game_mode_nn='../players/models/bigger_classifier200.hdf5', partner_nn='../players/models/partner_model_wider_data_2.hdf5', solo_nn='../players/models/solo_model_wider_data_10.hdf5', wenz_nn='../players/models/wenz_model_wider_data_10.hdf5') ] game_state = sample_game_states[15] num_simulations = 100 ucb_constant = 0.1 player = UCTPlayer(ucb_const=ucb_constant, num_samples=1, num_simulations=num_simulations, simulation_player_list=None) root_node = MCNode(game_state=game_state) mc_tree = MCTree(root_node=root_node) for sim_num in range(1, player.num_simulations + 1): selected_node = player.selection(mc_tree) rewards = player.simulation(selected_node) mc_tree.backup_rewards(leaf_node=selected_node, rewards=rewards) mc_tree.visualize_tree( ucb=player.ucb_const, filename="Tree_{}nodes{}ucb_const{}game_mode".format( num_simulations, ucb_constant, game_state["game_mode"]))
def test_add_node(game_state_partner, next_state, different_next_state): root_node = MCNode(game_state=game_state_partner, parent=None, previous_action= None) child = MCNode(game_state=next_state, parent=root_node, previous_action=(NO_GAME, None)) root_node.add_child(child) assert len(root_node.children) == 1 child.update_rewards([30, 30, -30, -30]) child.update_visits() root_node.update_visits() assert child.current_player == 1 assert child.get_average_reward(child.current_player) == 30 child.update_rewards([20, 20, -20, -20]) child.update_visits() root_node.update_visits() assert child.get_average_reward(child.current_player) == 25 sec_child = MCNode(game_state=different_next_state, parent=root_node, previous_action=(PARTNER_MODE, LEAVES)) assert not root_node.fully_expanded() sec_child.update_rewards([-20, 20, 20, -20]) sec_child.update_visits() root_node.update_visits() assert root_node.best_child(ucb_const=1).previous_action == (NO_GAME, None)
def main(): sim_player_list = [NNPlayer(game_mode_nn='../players/models/bigger_classifier200.hdf5', partner_nn='../players/models/partner_model_wider_data_2.hdf5', solo_nn='../players/models/solo_model_wider_data_10.hdf5', wenz_nn='../players/models/wenz_model_wider_data_10.hdf5'), NNPlayer(game_mode_nn='../players/models/bigger_classifier200.hdf5', partner_nn='../players/models/partner_model_wider_data_2.hdf5', solo_nn='../players/models/solo_model_wider_data_10.hdf5', wenz_nn='../players/models/wenz_model_wider_data_10.hdf5'), NNPlayer(game_mode_nn='../players/models/bigger_classifier200.hdf5', partner_nn='../players/models/partner_model_wider_data_2.hdf5', solo_nn='../players/models/solo_model_wider_data_10.hdf5', wenz_nn='../players/models/wenz_model_wider_data_10.hdf5'), NNPlayer(game_mode_nn='../players/models/bigger_classifier200.hdf5', partner_nn='../players/models/partner_model_wider_data_2.hdf5', solo_nn='../players/models/solo_model_wider_data_10.hdf5', wenz_nn='../players/models/wenz_model_wider_data_10.hdf5')] cum_depth = 0 for game_state in sample_game_states: num_simulations = 100 ucb_constant = 0.1 player = UCTPlayer(ucb_const=ucb_constant, num_samples=1, num_simulations=num_simulations, simulation_player_list=None) root_node = MCNode(game_state=game_state) mc_tree = MCTree(root_node=root_node) for sim_num in range(1, player.num_simulations + 1): selected_node = player.selection(mc_tree) rewards = player.simulation(selected_node) mc_tree.backup_rewards(leaf_node=selected_node, rewards=rewards) depth = mc_tree.max_depth() cum_depth += depth print('Average tree depth without NN:', cum_depth / len(sample_game_states)) cum_depth_with_nn = 0 for game_state in sample_game_states: num_simulations = 100 ucb_constant = 0.1 player = UCTPlayer(ucb_const=ucb_constant, num_samples=1, num_simulations=num_simulations, simulation_player_list=sim_player_list) root_node = MCNode(game_state=game_state) mc_tree = MCTree(root_node=root_node) for sim_num in range(1, player.num_simulations + 1): selected_node = player.selection(mc_tree) rewards = player.simulation(selected_node) mc_tree.backup_rewards(leaf_node=selected_node, rewards=rewards) depth = mc_tree.max_depth() cum_depth_with_nn += depth print('Average tree depth with NN:', cum_depth_with_nn / len(sample_game_states))