示例#1
0
 def create_master(self):
     command, args = self.get_pod_command_args(task_type=TaskType.MASTER,
                                               task_idx=0)
     env_vars = self.get_env_vars(task_type=TaskType.MASTER, task_idx=0)
     resources = self.get_resources(task_type=TaskType.MASTER, task_idx=0)
     annotations = self.get_annotations(task_type=TaskType.MASTER,
                                        task_idx=0)
     node_selector = self.get_node_selector(task_type=TaskType.MASTER,
                                            task_idx=0)
     affinity = self.get_affinity(task_type=TaskType.MASTER, task_idx=0)
     tolerations = self.get_tolerations(task_type=TaskType.MASTER,
                                        task_idx=0)
     max_restarts = get_max_restart(self.spec.max_restarts,
                                    conf.get(MAX_RESTARTS_EXPERIMENTS))
     return self._create_job(task_type=TaskType.MASTER,
                             task_idx=0,
                             command=command,
                             args=args,
                             env_vars=env_vars,
                             resources=resources,
                             annotations=annotations,
                             node_selector=node_selector,
                             affinity=affinity,
                             tolerations=tolerations,
                             add_service=self.MASTER_SERVICE,
                             max_restarts=max_restarts)
示例#2
0
 def create_multi_jobs(self, task_type, add_service):
     resp = []
     n_pods = self.get_n_pods(task_type=task_type)
     max_restarts = get_max_restart(self.spec.max_restarts,
                                    conf.get(MAX_RESTARTS_EXPERIMENTS))
     for i in range(n_pods):
         command, args = self.get_pod_command_args(task_type=task_type,
                                                   task_idx=i)
         env_vars = self.get_env_vars(task_type=task_type, task_idx=i)
         resources = self.get_resources(task_type=task_type, task_idx=i)
         annotations = self.get_annotations(task_type=task_type, task_idx=i)
         node_selector = self.get_node_selector(task_type=task_type,
                                                task_idx=i)
         affinity = self.get_affinity(task_type=task_type, task_idx=i)
         tolerations = self.get_tolerations(task_type=task_type, task_idx=i)
         resp.append(
             self._create_job(task_type=task_type,
                              task_idx=i,
                              command=command,
                              args=args,
                              env_vars=env_vars,
                              resources=resources,
                              annotations=annotations,
                              node_selector=node_selector,
                              affinity=affinity,
                              tolerations=tolerations,
                              add_service=add_service,
                              max_restarts=max_restarts))
     return resp
示例#3
0
def start_notebook(notebook):
    # Update job status to show that its started
    notebook.set_status(JobLifeCycle.SCHEDULED)

    try:
        registry_spec = get_registry_context(build_backend=None)
    except ContainerRegistryError:
        notebook.set_status(
            JobLifeCycle.FAILED,
            message=
            'Could not start the notebook, please check your registry configuration.'
        )
        return

    try:
        image_name, image_tag = get_image_info(
            build_job=notebook.build_job, registry_host=registry_spec.host)
    except (ValueError, AttributeError):
        _logger.error('Could not start the notebook.', exc_info=True)
        notebook.set_status(JobLifeCycle.FAILED,
                            message='Image info was not found.')
        return
    job_docker_image = '{}:{}'.format(image_name, image_tag)
    _logger.info('Start notebook with built image `%s`', job_docker_image)

    spawner = NotebookSpawner(project_name=notebook.project.unique_name,
                              project_uuid=notebook.project.uuid.hex,
                              job_name=notebook.unique_name,
                              job_uuid=notebook.uuid.hex,
                              k8s_config=conf.get(K8S_CONFIG),
                              namespace=conf.get(K8S_NAMESPACE),
                              job_docker_image=job_docker_image,
                              in_cluster=True)

    error = {}
    try:
        mount_code_in_notebooks = conf.get(NOTEBOOKS_MOUNT_CODE)
        results = spawner.start_notebook(
            persistence_outputs=notebook.persistence_outputs,
            persistence_data=notebook.persistence_data,
            outputs_refs_jobs=notebook.outputs_refs_jobs,
            outputs_refs_experiments=notebook.outputs_refs_experiments,
            resources=notebook.resources,
            labels=notebook.labels,
            annotations=notebook.annotations,
            secret_refs=notebook.secret_refs,
            config_map_refs=notebook.config_map_refs,
            node_selector=notebook.node_selector,
            affinity=notebook.affinity,
            tolerations=notebook.tolerations,
            backend=notebook.backend,
            max_restarts=get_max_restart(notebook.max_restarts,
                                         conf.get(MAX_RESTARTS_NOTEBOOKS)),
            reconcile_url=get_notebook_reconcile_url(notebook.unique_name),
            mount_code_in_notebooks=mount_code_in_notebooks)
        notebook.definition = get_job_definition(results)
        notebook.save(update_fields=['definition'])
        return
    except ApiException:
        _logger.error(
            'Could not start notebook, please check your polyaxon spec.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start the job, encountered a Kubernetes ApiException.',
        }
    except StoreNotFoundError as e:
        _logger.error(
            'Could not start the notebook, please check your volume definitions',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start the job, encountered a volume definition problem. %s'
            % e,
        }
    except Exception as e:
        _logger.error(
            'Could not start notebook, please check your polyaxon spec.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start notebook encountered an {} exception.'.format(
                e.__class__.__name__)
        }
    finally:
        if error.get('raised'):
            notebook.set_status(JobLifeCycle.FAILED,
                                message=error.get('message'),
                                traceback=error.get('traceback'))
示例#4
0
def start_dockerizer(build_job):
    # Update job status to show that its started
    build_job.set_status(JobLifeCycle.SCHEDULED)
    spawner_class = get_spawner_class(build_job.backend)

    try:
        registry_spec = get_registry_context(build_backend=build_job.backend)
    except ContainerRegistryError:
        build_job.set_status(
            JobLifeCycle.FAILED,
            message=
            'Could not start the dockerizer job, please check your registry configuration.'
        )
        return

    spawner = spawner_class(project_name=build_job.project.unique_name,
                            project_uuid=build_job.project.uuid.hex,
                            job_name=build_job.unique_name,
                            job_uuid=build_job.uuid.hex,
                            commit=build_job.commit,
                            from_image=build_job.build_image,
                            dockerfile_path=build_job.build_dockerfile,
                            context_path=build_job.build_context,
                            image_tag=build_job.uuid.hex,
                            image_name=get_image_name(
                                build_job=build_job,
                                registry_host=registry_spec.host),
                            build_steps=build_job.build_steps,
                            env_vars=build_job.build_env_vars,
                            lang_env=build_job.build_lang_env,
                            nocache=build_job.build_nocache,
                            insecure=registry_spec.insecure,
                            creds_secret_ref=registry_spec.secret,
                            creds_secret_items=registry_spec.secret_items,
                            k8s_config=conf.get(K8S_CONFIG),
                            namespace=conf.get(K8S_NAMESPACE),
                            in_cluster=True,
                            use_sidecar=True,
                            log_level=build_job.specification.log_level)

    error = {}
    try:
        results = spawner.start_dockerizer(
            secret_refs=build_job.secret_refs,
            config_map_refs=build_job.config_map_refs,
            resources=build_job.resources,
            labels=build_job.labels,
            annotations=build_job.annotations,
            node_selector=build_job.node_selector,
            affinity=build_job.affinity,
            tolerations=build_job.tolerations,
            max_restarts=get_max_restart(build_job.max_restarts,
                                         conf.get(MAX_RESTARTS_BUILD_JOBS)),
            reconcile_url=get_build_reconcile_url(build_job.unique_name))
        auditor.record(event_type=BUILD_JOB_STARTED, instance=build_job)
        build_job.definition = get_job_definition(results)
        build_job.save(update_fields=['definition'])
        return True
    except ApiException:
        _logger.error(
            'Could not start build job, please check your polyaxon spec',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start build job, encountered a Kubernetes ApiException.'
        }
    except StoreNotFoundError as e:
        _logger.error(
            'Could not start build job, please check your volume definitions.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start build job, encountered a volume definition problem. %s'
            % e
        }
    except Exception as e:
        _logger.error(
            'Could not start build job, please check your polyaxon spec.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start build job encountered an {} exception.'.format(
                e.__class__.__name__)
        }
    finally:
        if error.get('raised'):
            build_job.set_status(JobLifeCycle.FAILED,
                                 message=error.get('message'),
                                 traceback=error.get('traceback'))
示例#5
0
def start_job(job):
    # Update job status to show that its started
    job.set_status(JobLifeCycle.SCHEDULED)

    try:
        registry_spec = get_registry_context(build_backend=None)
    except ContainerRegistryError:
        job.set_status(
            JobLifeCycle.FAILED,
            message=
            'Could not start the job, please check your registry configuration.'
        )
        return

    try:
        image_name, image_tag = get_image_info(
            build_job=job.build_job, registry_host=registry_spec.host)
    except (ValueError, AttributeError):
        _logger.error('Could not start the job.', exc_info=True)
        job.set_status(JobLifeCycle.FAILED,
                       message='Image info was not found.')
        return
    job_docker_image = '{}:{}'.format(image_name, image_tag)
    _logger.info('Start job with built image `%s`', job_docker_image)

    spawner = JobSpawner(project_name=job.project.unique_name,
                         project_uuid=job.project.uuid.hex,
                         job_name=job.unique_name,
                         job_uuid=job.uuid.hex,
                         k8s_config=conf.get(K8S_CONFIG),
                         namespace=conf.get(K8S_NAMESPACE),
                         job_docker_image=job_docker_image,
                         in_cluster=True,
                         use_sidecar=True,
                         log_level=job.specification.log_level)

    error = {}
    try:
        results = spawner.start_job(
            container_cmd_callback=job.specification.run.get_container_cmd,
            persistence_data=job.persistence_data,
            persistence_outputs=job.persistence_outputs,
            outputs_refs_jobs=job.outputs_refs_jobs,
            outputs_refs_experiments=job.outputs_refs_experiments,
            secret_refs=job.secret_refs,
            config_map_refs=job.config_map_refs,
            resources=job.resources,
            labels=job.labels,
            annotations=job.annotations,
            node_selector=job.node_selector,
            affinity=job.affinity,
            tolerations=job.tolerations,
            max_restarts=get_max_restart(job.max_restarts,
                                         conf.get(MAX_RESTARTS_JOBS)),
            reconcile_url=get_job_reconcile_url(job.unique_name))
        job.definition = get_job_definition(results)
        job.save(update_fields=['definition'])
        return
    except ApiException:
        _logger.error('Could not start job, please check your polyaxon spec.',
                      exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start the job, encountered a Kubernetes ApiException.',
        }
    except StoreNotFoundError as e:
        _logger.error(
            'Could not start the job, please check your volume definitions.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start the job, encountered a volume definition problem. %s'
            % e,
        }
    except Exception as e:
        _logger.error('Could not start job, please check your polyaxon spec.',
                      exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start job encountered an {} exception.'.format(
                e.__class__.__name__)
        }
    finally:
        if error.get('raised'):
            job.set_status(JobLifeCycle.FAILED,
                           message=error.get('message'),
                           traceback=error.get('traceback'))
def start_tensorboard(tensorboard):
    # Update job status to show that its started
    tensorboard.set_status(JobLifeCycle.SCHEDULED)

    spawner = TensorboardSpawner(project_name=tensorboard.project.unique_name,
                                 project_uuid=tensorboard.project.uuid.hex,
                                 job_name=tensorboard.unique_name,
                                 job_uuid=tensorboard.uuid.hex,
                                 k8s_config=conf.get(K8S_CONFIG),
                                 namespace=conf.get(K8S_NAMESPACE),
                                 job_docker_image=tensorboard.build_image,
                                 in_cluster=True)

    error = {}
    outputs_specs, tensorboard_paths = tensorboard.outputs_path
    try:
        results = spawner.start_tensorboard(
            outputs_path=tensorboard_paths,
            persistence_outputs=tensorboard.persistence_outputs,
            outputs_specs=outputs_specs,
            outputs_refs_jobs=tensorboard.outputs_refs_jobs,
            outputs_refs_experiments=tensorboard.outputs_refs_experiments,
            resources=tensorboard.resources,
            labels=tensorboard.labels,
            annotations=tensorboard.annotations,
            node_selector=tensorboard.node_selector,
            affinity=tensorboard.affinity,
            tolerations=tensorboard.tolerations,
            max_restarts=get_max_restart(tensorboard.max_restarts,
                                         conf.get(MAX_RESTARTS_TENSORBOARDS)),
            reconcile_url=get_tensorboard_reconcile_url(
                tensorboard.unique_name))
        tensorboard.definition = get_job_definition(results)
        tensorboard.save(update_fields=['definition'])
        return
    except ApiException:
        _logger.error(
            'Could not start tensorboard, please check your polyaxon spec.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start the job, encountered a Kubernetes ApiException.',
        }
    except StoreNotFoundError as e:
        _logger.error(
            'Could not start the tensorboard, please check your volume definitions.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start the job, encountered a volume definition problem. %s'
            % e,
        }
    except TensorboardValidation as e:
        _logger.error(
            'Could not start the tensorboard, '
            'some experiments require authenticating to stores with different access.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            None,
            'message':
            'Could not start the tensorboard, '
            'some experiments require authenticating '
            'to stores with different access. %s' % e,
        }
    except Exception as e:
        _logger.error(
            'Could not start tensorboard, please check your polyaxon spec.',
            exc_info=True)
        error = {
            'raised':
            True,
            'traceback':
            traceback.format_exc(),
            'message':
            'Could not start tensorboard encountered an {} exception.'.format(
                e.__class__.__name__)
        }
    finally:
        if error.get('raised'):
            tensorboard.set_status(JobLifeCycle.FAILED,
                                   message=error.get('message'),
                                   traceback=error.get('traceback'))