def summary(self, yname=None, xname=None, title=0, alpha=.05, return_fmt='text'): """ This is for testing the new summary setup """ from scikits.statsmodels.iolib.summary import (summary_top, summary_params, summary_return) ## left = [(i, None) for i in ( ## 'Dependent Variable:', ## 'Model type:', ## 'Method:', ## 'Date:', ## 'Time:', ## 'Number of Obs:', ## 'df resid', ## 'df model', ## )] top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['IRLS']), ('Norm:', [self.fit_options['norm']]), ('Scale Est.:', [self.fit_options['scale_est']]), ('Cov Type:', [self.fit_options['cov']]), ('Date:', None), ('Time:', None), ('No. Iterations:', ["%d" % self.model.iteration]), #stale state? ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None) ] if not title is None: title = "Robust linear Model Regression Results" #boiler plate from scikits.statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=.05, use_t=False) #diagnostic table is not used yet # smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="") #add warnings/notes, added to text format only etext =[] wstr = \ '''If the model instance has been used for another fit with different fit parameters, then the fit options might not be the correct ones anymore .''' etext.append(wstr) if etext: smry.add_extra_txt(etext) return smry
def summary(self, yname=None, xname=None, title=None, alpha=.05): """Summarize the Regression Results Parameters ----------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- scikits.statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [('Dep. Variable:', None), ('Model:', [self.model.__class__.__name__]), ('Method:', ['MLE']), ('Date:', None), ('Time:', None), ('No. iterations:', ["%d" % self.mle_retvals['iterations']]), ('converged:', ["%s" % self.mle_retvals['converged']]) ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None), ('Pseudo R-squ.:', ["%#6.4g" % self.prsquared]), ('Log-Likelihood:', None), ('LL-Null:', ["%#8.5g" % self.llnull]), ('LLR p-value:', ["%#6.4g" % self.llr_pvalue]) ] if title is None: title = self.model.__class__.__name__ + ' ' + "Regression Results" #boiler plate from scikits.statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=.05, use_t=True) #diagnostic table not used yet # smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="") #TODO: attach only to binary models if self.model.__class__.__name__ in ['Logit', 'Probit']: fittedvalues = self.model.cdf(self.fittedvalues) absprederror = np.abs(self.model.endog - fittedvalues) predclose_sum = (absprederror < 1e-4).sum() predclose_frac = predclose_sum / len(fittedvalues) #add warnings/notes etext =[] if predclose_sum == len(fittedvalues): #nobs? wstr = \ '''Complete Separation: The results show that there is complete separation. In this case the Maximum Likelihood Estimator does not exist and the parameters are not identified.''' etext.append(wstr) elif predclose_frac > 0.1: #TODO: get better diagnosis wstr = \ '''Possibly complete quasi-separation: A fraction %f4.2 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.''' % predclose_frac etext.append(wstr) if etext: smry.add_extra_txt(etext) return smry
def summary(self, yname=None, xname=None, title=None, alpha=.05): """Summarize the Regression Results Parameters ----------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- scikits.statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [ ('Dep. Variable:', None), ('Model:', None), ('Model Family:', [self.family.__class__.__name__]), ('Link Function:', [self.family.link.__class__.__name__]), ('Method:', ['IRLS']), ('Date:', None), ('Time:', None), ('No. Iterations:', ["%d" % self.model.iteration]), ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None), ('Scale:', [self.scale]), ('Log-Likelihood:', None), ('Deviance:', ["%#8.5g" % self.deviance]), ('Pearson chi2:', ["%#6.3g" % self.pearson_chi2])] if title is None: title = "Generalized Linear Model Regression Results" #create summary tables from scikits.statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols( self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=.05, use_t=True) #diagnostic table is not used yet: # smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="") return smry
def summary(self, yname=None, xname=None, title=0, alpha=.05, return_fmt='text'): """ This is for testing the new summary setup """ from scikits.statsmodels.iolib.summary import (summary_top, summary_params, summary_return) ## left = [(i, None) for i in ( ## 'Dependent Variable:', ## 'Model type:', ## 'Method:', ## 'Date:', ## 'Time:', ## 'Number of Obs:', ## 'df resid', ## 'df model', ## )] top_left = [ ('Dep. Variable:', None), ('Model:', None), ('Method:', ['IRLS']), ('Norm:', [self.fit_options['norm']]), ('Scale Est.:', [self.fit_options['scale_est']]), ('Cov Type:', [self.fit_options['cov']]), ('Date:', None), ('Time:', None), ('No. Iterations:', ["%d" % self.model.iteration]), #stale state? ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None)] if not title is None: title = "Robust linear Model Regression Results" #boiler plate from scikits.statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols( self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=.05, use_t=False) #diagnostic table is not used yet # smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="") #add warnings/notes, added to text format only etext = [] wstr = \ '''If the model instance has been used for another fit with different fit parameters, then the fit options might not be the correct ones anymore .''' etext.append(wstr) if etext: smry.add_extra_txt(etext) return smry
def summary(self, yname=None, xname=None, title=None, alpha=.05, yname_list=None): """Summarize the Regression Results Parameters ----------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- scikits.statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [ ('Dep. Variable:', None), ('Model:', [self.model.__class__.__name__]), ('Method:', ['MLE']), ('Date:', None), ('Time:', None), # ('No. iterations:', ["%d" % self.mle_retvals['iterations']]), ('converged:', ["%s" % self.mle_retvals['converged']]) ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None), ('Pseudo R-squ.:', ["%#6.4g" % self.prsquared]), ('Log-Likelihood:', None), ('LL-Null:', ["%#8.5g" % self.llnull]), ('LLR p-value:', ["%#6.4g" % self.llr_pvalue])] if title is None: title = self.model.__class__.__name__ + ' ' + "Regression Results" #boiler plate from scikits.statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols( self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) if yname_list is None: yname_list = yname smry.add_table_params(self, yname=yname_list, xname=xname, alpha=.05, use_t=True) #diagnostic table not used yet # smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="") #TODO: attach only to binary models if self.model.__class__.__name__ in ['Logit', 'Probit']: fittedvalues = self.model.cdf(self.fittedvalues) absprederror = np.abs(self.model.endog - fittedvalues) predclose_sum = (absprederror < 1e-4).sum() predclose_frac = predclose_sum / len(fittedvalues) #add warnings/notes etext = [] if predclose_sum == len(fittedvalues): #nobs? wstr = \ '''Complete Separation: The results show that there is complete separation. In this case the Maximum Likelihood Estimator does not exist and the parameters are not identified.''' etext.append(wstr) elif predclose_frac > 0.1: #TODO: get better diagnosis wstr = \ '''Possibly complete quasi-separation: A fraction %f4.2 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.''' % predclose_frac etext.append(wstr) if etext: smry.add_extra_txt(etext) return smry
def summary(self, yname=None, xname=None, title=None, alpha=.05): """Summarize the Regression Results Parameters ----------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- scikits.statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [('Dep. Variable:', None), ('Model:', None), ('Model Family:', [self.family.__class__.__name__]), ('Link Function:', [self.family.link.__class__.__name__]), ('Method:', ['IRLS']), ('Date:', None), ('Time:', None), ('No. Iterations:', ["%d" % self.model.iteration]), ] top_right = [('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None), ('Scale:', [self.scale]), ('Log-Likelihood:', None), ('Deviance:', ["%#8.5g" % self.deviance]), ('Pearson chi2:', ["%#6.3g" % self.pearson_chi2]) ] if title is None: title = "Generalized Linear Model Regression Results" #create summary tables from scikits.statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=.05, use_t=True) #diagnostic table is not used yet: # smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, # yname=yname, xname=xname, # title="") return smry