示例#1
0
def use_solver(**kwargs):
    """
    Select default sparse direct solver to be used.

    Parameters
    ----------
    useUmfpack : bool, optional
        Use UMFPACK over SuperLU. Has effect only if scikits.umfpack is
        installed. Default: True
    assumeSortedIndices : bool, optional
        Allow UMFPACK to skip the step of sorting indices for a CSR/CSC matrix.
        Has effect only if useUmfpack is True and scikits.umfpack is installed.
        Default: False

    Notes
    -----
    The default sparse solver is umfpack when available
    (scikits.umfpack is installed). This can be changed by passing
    useUmfpack = False, which then causes the always present SuperLU
    based solver to be used.

    Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If
    sure that the matrix fulfills this, pass ``assumeSortedIndices=True``
    to gain some speed.

    """
    if 'useUmfpack' in kwargs:
        globals()['useUmfpack'] = kwargs['useUmfpack']
    if useUmfpack and 'assumeSortedIndices' in kwargs:
        umfpack.configure(assumeSortedIndices=kwargs['assumeSortedIndices'])
示例#2
0
 def __init__(self):
     # List here the functions that can be used to solve equations
     self.convergence_helpers = [self.solve_simple, 
                                 self.solve_homotopy_gmin2, 
                                 self.solve_homotopy_source, 
                                 None]
     # Allocate UmfPack context
     umfp.configure(assumeSortedIndices = True)
     self._umf = umfp.UmfpackContext(family='di', maxCond=1e20)
     # Set control options. Try to find optimum values?
     self._umf.control[5] = umfp.UMFPACK_STRATEGY_AUTO
     self._umf.control[7] = 1 # Iterative refinement steps
     self._umf.control[16] = umfp.UMFPACK_SCALE_NONE
     # print(self._umf.report_control())
     # Force Symbolic and Numeric factorization
     self.__doSymbolic = True
示例#3
0
def use_solver( **kwargs ):
    """
    Valid keyword arguments with defaults (other ignored):
      useUmfpack = True
      assumeSortedIndices = False

    The default sparse solver is umfpack when available. This can be changed by
    passing useUmfpack = False, which then causes the always present SuperLU
    based solver to be used.

    Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If
    sure that the matrix fulfills this, pass assumeSortedIndices=True
    to gain some speed.
    """
    if 'useUmfpack' in kwargs:
        globals()['useUmfpack'] = kwargs['useUmfpack']

    if isUmfpack:
        umfpack.configure( **kwargs )
示例#4
0
def use_solver(**kwargs):
    """
    Valid keyword arguments with defaults (other ignored)::

      useUmfpack = True
      assumeSortedIndices = False

    The default sparse solver is umfpack when available. This can be changed by
    passing useUmfpack = False, which then causes the always present SuperLU
    based solver to be used.

    Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If
    sure that the matrix fulfills this, pass ``assumeSortedIndices=True``
    to gain some speed.

    """
    if 'useUmfpack' in kwargs:
        globals()['useUmfpack'] = kwargs['useUmfpack']

    if isUmfpack:
        umfpack.configure(**kwargs)
示例#5
0
def use_solver(**kwargs):
    """
    Select default sparse direct solver to be used.

    Parameters
    ----------
    useUmfpack : bool, optional
        Use UMFPACK [1]_, [2]_, [3]_, [4]_. over SuperLU. Has effect only
        if ``scikits.umfpack`` is installed. Default: True
    assumeSortedIndices : bool, optional
        Allow UMFPACK to skip the step of sorting indices for a CSR/CSC matrix.
        Has effect only if useUmfpack is True and ``scikits.umfpack`` is
        installed. Default: False

    Notes
    -----
    The default sparse solver is UMFPACK when available
    (``scikits.umfpack`` is installed). This can be changed by passing
    useUmfpack = False, which then causes the always present SuperLU
    based solver to be used.

    UMFPACK requires a CSR/CSC matrix to have sorted column/row indices. If
    sure that the matrix fulfills this, pass ``assumeSortedIndices=True``
    to gain some speed.

    References
    ----------
    .. [1] T. A. Davis, Algorithm 832:  UMFPACK - an unsymmetric-pattern
           multifrontal method with a column pre-ordering strategy, ACM
           Trans. on Mathematical Software, 30(2), 2004, pp. 196--199.
           https://dl.acm.org/doi/abs/10.1145/992200.992206

    .. [2] T. A. Davis, A column pre-ordering strategy for the
           unsymmetric-pattern multifrontal method, ACM Trans.
           on Mathematical Software, 30(2), 2004, pp. 165--195.
           https://dl.acm.org/doi/abs/10.1145/992200.992205

    .. [3] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal
           method for unsymmetric sparse matrices, ACM Trans. on
           Mathematical Software, 25(1), 1999, pp. 1--19.
           https://doi.org/10.1145/305658.287640

    .. [4] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal
           method for sparse LU factorization, SIAM J. Matrix Analysis and
           Computations, 18(1), 1997, pp. 140--158.
           https://doi.org/10.1137/S0895479894246905T.

    Examples
    --------
    >>> from scipy.sparse.linalg import use_solver, spsolve
    >>> from scipy.sparse import csc_matrix
    >>> R = np.random.randn(5, 5)
    >>> A = csc_matrix(R)
    >>> b = np.random.randn(5)
    >>> use_solver(useUmfpack=False) # enforce superLU over UMFPACK
    >>> x = spsolve(A, b)
    >>> np.allclose(A.dot(x), b)
    True
    >>> use_solver(useUmfpack=True) # reset umfPack usage to default
    """
    if 'useUmfpack' in kwargs:
        globals()['useUmfpack'] = kwargs['useUmfpack']
    if useUmfpack and 'assumeSortedIndices' in kwargs:
        umfpack.configure(assumeSortedIndices=kwargs['assumeSortedIndices'])