示例#1
0
def _processing_wrapper(args):
    hdf5_filename = args[0]
    labels_img = args[1]
    in_label, out_label = args[2]
    measures_to_compute = copy.copy(args[3])
    if args[4] is not None:
        similarity_directory = args[4][0]
    weighted = args[5]
    include_dps = args[6]
    min_lesion_vol = args[7]

    hdf5_file = h5py.File(hdf5_filename, 'r')
    key = '{}_{}'.format(in_label, out_label)
    if key not in hdf5_file:
        return
    streamlines = reconstruct_streamlines_from_hdf5(hdf5_file, key)
    if len(streamlines) == 0:
        return

    affine, dimensions, voxel_sizes, _ = get_reference_info(labels_img)
    measures_to_return = {}

    if not (np.allclose(hdf5_file.attrs['affine'], affine, atol=1e-03)
            and np.array_equal(hdf5_file.attrs['dimensions'], dimensions)):
        raise ValueError('Provided hdf5 have incompatible headers.')

    # Precompute to save one transformation, insert later
    if 'length' in measures_to_compute:
        streamlines_copy = list(streamlines)
        # scil_decompose_connectivity.py requires isotropic voxels
        mean_length = np.average(length(streamlines_copy))*voxel_sizes[0]

    # If density is not required, do not compute it
    # Only required for volume, similarity and any metrics
    if not ((len(measures_to_compute) == 1 and
             ('length' in measures_to_compute or
              'streamline_count' in measures_to_compute)) or
            (len(measures_to_compute) == 2 and
             ('length' in measures_to_compute and
              'streamline_count' in measures_to_compute))):

        density = compute_tract_counts_map(streamlines,
                                           dimensions)

    if 'volume' in measures_to_compute:
        measures_to_return['volume'] = np.count_nonzero(density) * \
            np.prod(voxel_sizes)
        measures_to_compute.remove('volume')
    if 'streamline_count' in measures_to_compute:
        measures_to_return['streamline_count'] = len(streamlines)
        measures_to_compute.remove('streamline_count')
    if 'length' in measures_to_compute:
        measures_to_return['length'] = mean_length
        measures_to_compute.remove('length')
    if 'similarity' in measures_to_compute and similarity_directory:
        density_sim = load_node_nifti(similarity_directory,
                                      in_label, out_label,
                                      labels_img)
        if density_sim is None:
            ba_vox = 0
        else:
            ba_vox = compute_bundle_adjacency_voxel(density, density_sim)

        measures_to_return['similarity'] = ba_vox
        measures_to_compute.remove('similarity')

    for measure in measures_to_compute:
        # Maps
        if isinstance(measure, str) and os.path.isdir(measure):
            map_dirname = measure
            map_data = load_node_nifti(map_dirname,
                                       in_label, out_label,
                                       labels_img)
            measures_to_return[map_dirname] = np.average(
                map_data[map_data > 0])
        elif isinstance(measure, tuple):
            if not isinstance(measure[0], tuple) \
                    and os.path.isfile(measure[0]):
                metric_filename = measure[0]
                metric_img = measure[1]
                if not is_header_compatible(metric_img, labels_img):
                    logging.error('{} do not have a compatible header'.format(
                        metric_filename))
                    raise IOError

                metric_data = metric_img.get_fdata(dtype=np.float64)
                if weighted:
                    avg_value = np.average(metric_data, weights=density)
                else:
                    avg_value = np.average(metric_data[density > 0])
                measures_to_return[metric_filename] = avg_value
            # lesion
            else:
                lesion_filename = measure[0][0]
                computed_lesion_labels = measure[0][1]
                lesion_img = measure[1]
                if not is_header_compatible(lesion_img, labels_img):
                    logging.error('{} do not have a compatible header'.format(
                        lesion_filename))
                    raise IOError

                voxel_sizes = lesion_img.header.get_zooms()[0:3]
                lesion_img.set_filename('tmp.nii.gz')
                lesion_atlas = get_data_as_label(lesion_img)
                tmp_dict = compute_lesion_stats(
                    density.astype(bool), lesion_atlas,
                    voxel_sizes=voxel_sizes, single_label=True,
                    min_lesion_vol=min_lesion_vol,
                    precomputed_lesion_labels=computed_lesion_labels)

                tmp_ind = _streamlines_in_mask(list(streamlines),
                                               lesion_atlas.astype(np.uint8),
                                               np.eye(3), [0, 0, 0])
                streamlines_count = len(
                    np.where(tmp_ind == [0, 1][True])[0].tolist())

                if tmp_dict:
                    measures_to_return[lesion_filename+'vol'] = \
                        tmp_dict['lesion_total_volume']
                    measures_to_return[lesion_filename+'count'] = \
                        tmp_dict['lesion_count']
                    measures_to_return[lesion_filename+'sc'] = \
                        streamlines_count
                else:
                    measures_to_return[lesion_filename+'vol'] = 0
                    measures_to_return[lesion_filename+'count'] = 0
                    measures_to_return[lesion_filename+'sc'] = 0

    if include_dps:
        for dps_key in hdf5_file[key].keys():
            if dps_key not in ['data', 'offsets', 'lengths']:
                out_file = os.path.join(include_dps, dps_key)
                if 'commit' in dps_key:
                    measures_to_return[out_file] = np.sum(
                        hdf5_file[key][dps_key])
                else:
                    measures_to_return[out_file] = np.average(
                        hdf5_file[key][dps_key])

    return {(in_label, out_label): measures_to_return}
def _processing_wrapper(args):
    bundles_dir = args[0]
    in_label, out_label = args[1]
    measures_to_compute = copy.copy(args[2])
    weighted = args[3]
    if args[4] is not None:
        similarity_directory = args[4][0]

    in_filename_1 = os.path.join(bundles_dir,
                                 '{}_{}.trk'.format(in_label, out_label))
    in_filename_2 = os.path.join(bundles_dir,
                                 '{}_{}.trk'.format(out_label, in_label))
    if os.path.isfile(in_filename_1):
        in_filename = in_filename_1
    elif os.path.isfile(in_filename_2):
        in_filename = in_filename_2
    else:
        return

    sft = load_tractogram(in_filename, 'same')
    affine, dimensions, voxel_sizes, _ = sft.space_attributes
    measures_to_return = {}

    # Precompute to save one transformation, insert later
    if 'length' in measures_to_compute:
        streamlines_copy = list(sft.get_streamlines_copy())
        mean_length = np.average(length(streamlines_copy))

    # If density is not required, do not compute it
    # Only required for volume, similarity and any metrics
    if not ((len(measures_to_compute) == 1 and
             ('length' in measures_to_compute
              or 'streamline_count' in measures_to_compute)) or
            (len(measures_to_compute) == 2 and
             ('length' in measures_to_compute
              and 'streamline_count' in measures_to_compute))):
        sft.to_vox()
        sft.to_corner()
        density = compute_tract_counts_map(sft.streamlines, dimensions)

    if 'volume' in measures_to_compute:
        measures_to_return['volume'] = np.count_nonzero(density) * \
            np.prod(voxel_sizes)
        measures_to_compute.remove('volume')
    if 'streamline_count' in measures_to_compute:
        measures_to_return['streamline_count'] = len(sft)
        measures_to_compute.remove('streamline_count')
    if 'length' in measures_to_compute:
        measures_to_return['length'] = mean_length
        measures_to_compute.remove('length')
    if 'similarity' in measures_to_compute and similarity_directory:
        density_sim = load_node_nifti(similarity_directory, in_label,
                                      out_label, in_filename)

        ba_vox = compute_bundle_adjacency_voxel(density, density_sim)

        measures_to_return['similarity'] = ba_vox
        measures_to_compute.remove('similarity')

    for measure in measures_to_compute:
        if os.path.isdir(measure):
            map_dirname = measure
            map_data = load_node_nifti(map_dirname, in_label, out_label,
                                       in_filename)
            measures_to_return[map_dirname] = np.average(
                map_data[map_data > 0])
        elif os.path.isfile(measure):
            metric_filename = measure
            if not is_header_compatible(metric_filename, sft):
                logging.error(
                    '{} and {} do not have a compatible header'.format(
                        in_filename, metric_filename))
                raise IOError

            metric_data = nib.load(metric_filename).get_data()
            if weighted:
                density = density / np.max(density)
                voxels_value = metric_data * density
                voxels_value = voxels_value[voxels_value > 0]
            else:
                voxels_value = metric_data[density > 0]

            measures_to_return[metric_filename] = np.average(voxels_value)

    return {(in_label, out_label): measures_to_return}
def _processing_wrapper(args):
    hdf5_filename = args[0]
    labels_img = args[1]
    in_label, out_label = args[2]
    measures_to_compute = copy.copy(args[3])
    if args[4] is not None:
        similarity_directory = args[4][0]
    weighted = args[5]
    include_dps = args[6]

    hdf5_file = h5py.File(hdf5_filename, 'r')
    key = '{}_{}'.format(in_label, out_label)
    if key not in hdf5_file:
        return
    streamlines = reconstruct_streamlines_from_hdf5(hdf5_file, key)

    affine, dimensions, voxel_sizes, _ = get_reference_info(labels_img)
    measures_to_return = {}

    if not (np.allclose(hdf5_file.attrs['affine'], affine, atol=1e-03)
            and np.array_equal(hdf5_file.attrs['dimensions'], dimensions)):
        raise ValueError('Provided hdf5 have incompatible headers.')

    # Precompute to save one transformation, insert later
    if 'length' in measures_to_compute:
        streamlines_copy = list(streamlines)
        # scil_decompose_connectivity.py requires isotropic voxels
        mean_length = np.average(length(streamlines_copy)) * voxel_sizes[0]

    # If density is not required, do not compute it
    # Only required for volume, similarity and any metrics
    if not ((len(measures_to_compute) == 1 and
             ('length' in measures_to_compute
              or 'streamline_count' in measures_to_compute)) or
            (len(measures_to_compute) == 2 and
             ('length' in measures_to_compute
              and 'streamline_count' in measures_to_compute))):

        density = compute_tract_counts_map(streamlines, dimensions)

    if 'volume' in measures_to_compute:
        measures_to_return['volume'] = np.count_nonzero(density) * \
            np.prod(voxel_sizes)
        measures_to_compute.remove('volume')
    if 'streamline_count' in measures_to_compute:
        measures_to_return['streamline_count'] = len(streamlines)
        measures_to_compute.remove('streamline_count')
    if 'length' in measures_to_compute:
        measures_to_return['length'] = mean_length
        measures_to_compute.remove('length')
    if 'similarity' in measures_to_compute and similarity_directory:
        density_sim = load_node_nifti(similarity_directory, in_label,
                                      out_label, labels_img)
        if density_sim is None:
            ba_vox = 0
        else:
            ba_vox = compute_bundle_adjacency_voxel(density, density_sim)

        measures_to_return['similarity'] = ba_vox
        measures_to_compute.remove('similarity')

    for measure in measures_to_compute:
        if isinstance(measure, str) and os.path.isdir(measure):
            map_dirname = measure
            map_data = load_node_nifti(map_dirname, in_label, out_label,
                                       labels_img)
            measures_to_return[map_dirname] = np.average(
                map_data[map_data > 0])
        elif isinstance(measure, tuple) and os.path.isfile(measure[0]):
            metric_filename = measure[0]
            metric_img = measure[1]
            if not is_header_compatible(metric_img, labels_img):
                logging.error('{} do not have a compatible header'.format(
                    metric_filename))
                raise IOError

            metric_data = metric_img.get_fdata(dtype=np.float64)
            if weighted:
                density = density / np.max(density)
                voxels_value = metric_data * density
                voxels_value = voxels_value[voxels_value > 0]
            else:
                voxels_value = metric_data[density > 0]

            measures_to_return[metric_filename] = np.average(voxels_value)

    if include_dps:
        for dps_key in hdf5_file[key].keys():
            if dps_key not in ['data', 'offsets', 'lengths']:
                out_file = os.path.join(include_dps, dps_key)
                measures_to_return[out_file] = np.average(
                    hdf5_file[key][dps_key])

    return {(in_label, out_label): measures_to_return}
示例#4
0
def compute_all_measures(args):
    tuple_1, tuple_2 = args[0]
    filename_1, reference_1 = tuple_1
    filename_2, reference_2 = tuple_2
    streamline_dice = args[1]
    disable_streamline_distance = args[2]

    if not is_header_compatible(reference_1, reference_2):
        raise ValueError('{} and {} have incompatible headers'.format(
            filename_1, filename_2))

    data_tuple_1 = load_data_tmp_saving([filename_1, reference_1, False,
                                         disable_streamline_distance])
    if data_tuple_1 is None:
        return None

    density_1, endpoints_density_1, bundle_1, \
        centroids_1 = data_tuple_1

    data_tuple_2 = load_data_tmp_saving([filename_2, reference_2, False,
                                         disable_streamline_distance])
    if data_tuple_2 is None:
        return None

    density_2, endpoints_density_2, bundle_2, \
        centroids_2 = data_tuple_2

    _, _, voxel_size, _ = get_reference_info(reference_1)
    voxel_size = np.product(voxel_size)

    # These measures are in mm^3
    binary_1 = copy.copy(density_1)
    binary_1[binary_1 > 0] = 1
    binary_2 = copy.copy(density_2)
    binary_2[binary_2 > 0] = 1
    volume_overlap = np.count_nonzero(binary_1 * binary_2)
    volume_overlap_endpoints = np.count_nonzero(
        endpoints_density_1 * endpoints_density_2)
    volume_overreach = np.abs(np.count_nonzero(
        binary_1 + binary_2) - volume_overlap)
    volume_overreach_endpoints = np.abs(np.count_nonzero(
        endpoints_density_1 + endpoints_density_2) - volume_overlap_endpoints)

    # These measures are in mm
    bundle_adjacency_voxel = compute_bundle_adjacency_voxel(density_1,
                                                            density_2,
                                                            non_overlap=True)
    if streamline_dice and not disable_streamline_distance:
        bundle_adjacency_streamlines = \
            compute_bundle_adjacency_streamlines(bundle_1,
                                                 bundle_2,
                                                 non_overlap=True)
    elif not disable_streamline_distance:
        bundle_adjacency_streamlines = \
            compute_bundle_adjacency_streamlines(bundle_1,
                                                 bundle_2,
                                                 centroids_1=centroids_1,
                                                 centroids_2=centroids_2,
                                                 non_overlap=True)
    # These measures are between 0 and 1
    dice_vox, w_dice_vox = compute_dice_voxel(density_1, density_2)

    dice_vox_endpoints, w_dice_vox_endpoints = compute_dice_voxel(
        endpoints_density_1,
        endpoints_density_2)
    density_correlation = compute_correlation(density_1, density_2)
    density_correlation_endpoints = compute_correlation(endpoints_density_1,
                                                        endpoints_density_2)

    measures_name = ['bundle_adjacency_voxels',
                     'dice_voxels', 'w_dice_voxels',
                     'volume_overlap',
                     'volume_overreach',
                     'dice_voxels_endpoints',
                     'w_dice_voxels_endpoints',
                     'volume_overlap_endpoints',
                     'volume_overreach_endpoints',
                     'density_correlation',
                     'density_correlation_endpoints']
    measures = [bundle_adjacency_voxel,
                dice_vox, w_dice_vox,
                volume_overlap * voxel_size,
                volume_overreach * voxel_size,
                dice_vox_endpoints,
                w_dice_vox_endpoints,
                volume_overlap_endpoints * voxel_size,
                volume_overreach_endpoints * voxel_size,
                density_correlation,
                density_correlation_endpoints]

    if not disable_streamline_distance:
        measures_name += ['bundle_adjacency_streamlines']
        measures += [bundle_adjacency_streamlines]

    # Only when the tractograms are exactly the same
    if streamline_dice:
        dice_streamlines, streamlines_intersect, streamlines_union = \
            compute_dice_streamlines(bundle_1, bundle_2)
        streamlines_count_overlap = len(streamlines_intersect)
        streamlines_count_overreach = len(
            streamlines_union) - len(streamlines_intersect)
        measures_name += ['dice_streamlines',
                          'streamlines_count_overlap',
                          'streamlines_count_overreach']
        measures += [dice_streamlines,
                     streamlines_count_overlap,
                     streamlines_count_overreach]

    return dict(zip(measures_name, measures))