示例#1
0
def test_mapwrapper_parallel():
    in_arg = np.arange(10.)
    out_arg = np.sin(in_arg)

    with MapWrapper(2) as p:
        out = p(np.sin, in_arg)
        assert_equal(list(out), out_arg)

        assert_(p._own_pool is True)
        assert_(isinstance(p.pool, PWL))
        assert_(p._mapfunc is not None)

    # the context manager should've closed the internal pool
    # check that it has by asking it to calculate again.
    with assert_raises(Exception) as excinfo:
        p(np.sin, in_arg)

    assert_(excinfo.type is ValueError)

    # can also set a PoolWrapper up with a map-like callable instance
    try:
        p = Pool(2)
        q = MapWrapper(p.map)

        assert_(q._own_pool is False)
        q.close()

        # closing the PoolWrapper shouldn't close the internal pool
        # because it didn't create it
        out = p.map(np.sin, in_arg)
        assert_equal(list(out), out_arg)
    finally:
        p.close()
示例#2
0
    def test_parallel(self):
        with MapWrapper(2) as p:
            out = p(np.sin, self.input)
            assert_equal(list(out), self.output)

            assert_(p._own_pool is True)
            assert_(isinstance(p.pool, PWL))
            assert_(p._mapfunc is not None)

        # the context manager should've closed the internal pool
        # check that it has by asking it to calculate again.
        with assert_raises(Exception) as excinfo:
            p(np.sin, self.input)

        # on py27 an AssertionError is raised, on >py27 it's a ValueError
        err_type = excinfo.type
        assert_((err_type is ValueError) or (err_type is AssertionError))

        # can also set a PoolWrapper up with a map-like callable instance
        try:
            p = Pool(2)
            q = MapWrapper(p.map)

            assert_(q._own_pool is False)
            q.close()

            # closing the PoolWrapper shouldn't close the internal pool
            # because it didn't create it
            out = p.map(np.sin, self.input)
            assert_equal(list(out), self.output)
        finally:
            p.close()
示例#3
0
    def test_parallel(self):
        with MapWrapper(2) as p:
            out = p(np.sin, self.input)
            assert_equal(list(out), self.output)

            assert_(p._own_pool is True)
            assert_(isinstance(p.pool, PWL))
            assert_(p._mapfunc is not None)

        # the context manager should've closed the internal pool
        # check that it has by asking it to calculate again.
        with assert_raises(Exception) as excinfo:
            p(np.sin, self.input)

        # on py27 an AssertionError is raised, on >py27 it's a ValueError
        err_type = excinfo.type
        assert_((err_type is ValueError) or (err_type is AssertionError))

        # can also set a PoolWrapper up with a map-like callable instance
        try:
            p = Pool(2)
            q = MapWrapper(p.map)

            assert_(q._own_pool is False)
            q.close()

            # closing the PoolWrapper shouldn't close the internal pool
            # because it didn't create it
            out = p.map(np.sin, self.input)
            assert_equal(list(out), self.output)
        finally:
            p.close()
class EvolutionaryAlgorithmSolver(object):
    
    def __init__(self, func, bounds, args = None, crossover = 'arithmetic', 
                 mutation = 'uniform', generations = 1000, populationSize = 100, 
                 recombinationRate = 0.9, mutationRate = 0.1, seed = None):
        self.func = _FunctionWrapper(func, args)
        self.bounds = np.array(bounds)
        self.seed = check_random_state(seed)
        self.crossoverOp = crossover
        self.mutationOp = mutation
        self.generations = generations
        self.popsize = populationSize
        self.recombinationrate = recombinationRate
        self.mutationrate = mutationRate
        
        self._mapwrapper = MapWrapper(4)
        
    def tournament(self, parents, fitness):
        rng = self.seed
        idx = np.argsort(rng.uniform(size = (self.popsize, self.popsize)))[:,0:4]
        idx_1 = fitness[idx[:,0]] < fitness[idx[:,1]]
        idx_2 = fitness[idx[:,2]] < fitness[idx[:,3]]
        idx_parent_1 = idx[:,1]
        idx_parent_1[idx_1] = idx[idx_1,0]
        idx_parent_2 = idx[:,3]
        idx_parent_2[idx_2] = idx[idx_2,2]
        return (parents[idx_parent_1,:], parents[idx_parent_2,:])
    
    def arithmetic(self, parents):
        rng = self.seed
        size = np.shape(parents[0])
        alpha = rng.uniform(size = size)
        mask = rng.choice([False, True], size = (size[0]), 
                          p = [self.recombinationrate, 1-self.recombinationrate])
        offspring = np.multiply(alpha, parents[0]) + np.multiply(1-alpha, 
                               parents[1])
        offspring[offspring > 1] = 1
        offspring[offspring < 0] = 0
        offspring[mask] = parents[0][mask]
        return offspring
    
      #BLX
    def blx(self, parents):
        rng = self.seed
        size = np.shape(parents[0])
        alpha = rng.uniform(size = size)
        mask = rng.choice([False, True], size = (size[0]), 
                          p = [self.recombinationrate, 1-self.recombinationrate])
        d = np.absolute(parents[0]-parents[1])
        alphaD = np.multiply(alpha, d) 
        q = np.minimum(parents[0],parents[1])-alphaD
        r=np.maximum(parents[0],parents[1])+alphaD
        
        offspring= rng.uniform(low=q,high=r)  
        
        offspring[offspring > 1] = 1
        offspring[offspring < 0] = 0
        offspring[mask] = parents[0][mask]
        return offspring
    
        #SBX
    def sbx(self,parents):
        rng = self.seed
        size = np.shape(parents[0])
      
        mask = rng.choice([False, True], size = (size[0]), 
                          p = [self.recombinationrate, 1-self.recombinationrate])
        
        u=rng.uniform(size=size)
        n=10
        
         
        b=np.power(2*u,1/n)
            #(2*u)**(1/(n+1))
       
        b[u>.5]=np.power(2*(1-u[u>.5]),1/n)
        offspring=.5*(parents[0]+parents[1])-.5*np.multiply(b,parents[0]-parents[1])
        
            
               
        offspring[offspring > 1] = 1
        offspring[offspring < 0] = 0
        offspring[mask] = parents[0][mask]
        return offspring
    
    def uniform(self, offspring):
        rng = self.seed
        size=np.shape(offspring)
        mutation = rng.uniform(size = size)
        mask = rng.choice([True, False], size = size, p = [self.mutationrate, \
                          1-self.mutationrate])
        offspring[mask] = mutation[mask]
        return offspring
    
    def boundary(self,offspring):
        rng = self.seed
        size=np.shape(offspring)
        mutation =np.round(rng.uniform(size = size))
        
        mask = rng.choice([True, False], size = size, p = [self.mutationrate, \
                          1-self.mutationrate])
        offspring[mask] = mutation[mask]
        return offspring
    
    
    def __crossover(self, parents):
        if self.crossoverOp == 'blx':
            return self.blx(parents)
        elif self.crossoverOp == 'sbx':
            return self.sbx(parents)
        elif self.crossoverOp == 'arithmetic':
            return self.arithmetic(parents)
        else:
            raise ValueError("Please select a valid crossover strategy")
    
    def __mutation(self, offspring):
        if self.mutationOp == 'uniform':
            return self.uniform(offspring)
        elif self.mutationOp == 'boundary':
            return self.boundary(offspring)
        else:
            raise ValueError("Please select a valid mutation strategy")
            
    
    def __reproduce(self, parents):
        return self.__mutation(self.__crossover(parents))
    
    def __survivalSelection(self, parents, fparents, offspring, foffspring):
        mergedPop = np.vstack((parents, offspring))
        mergedFit = np.hstack((fparents, foffspring))
        
        idx = np.argsort(mergedFit)[0:self.popsize]
        
        return mergedPop[idx,:], mergedFit[idx]
    
    def __scaleParameters(self, population):
        scaled = np.multiply((self.bounds[:,1] - self.bounds[:,0]), population)
        return scaled + self.bounds[:,0]
        
    def solve(self):
        rng = self.seed
        
        numVars = np.shape(self.bounds)[0]
        
        # Check the bounds
        if not np.all((self.bounds[:,1] - self.bounds[:,0]) > 0):
            raise ValueError("Error: lower bound greater than upper bound")
        
        pop = rng.uniform(size=(self.popsize,numVars))
        
        fitness = self.func(self.__scaleParameters(pop))
        
        currentGeneration = 0
        while currentGeneration < self.generations + 1:
            parents = self.tournament(pop, fitness)
            offspring = self.__reproduce(parents)
            foffspring = self.func(self.__scaleParameters(offspring))
            
            pop, fitness = self.__survivalSelection(pop, fitness, offspring,
                                                    foffspring)
            print('The best value in generation '+str(currentGeneration)+ ' is '+str(np.min(fitness)))
            currentGeneration += 1
        
        idxBest = np.argmin(fitness)
        return (self.__scaleParameters(pop[idxBest,:]), fitness[idxBest])
    
    def __enter__(self):
        return self
    
    def __exit__(self, *args):
        self._mapwrapper.close()
class DifferentialEvolutionSolver(object):

    """This class implements the differential evolution solver

    Parameters
    ----------
    func : callable
        The objective function to be minimized.  Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    bounds : sequence
        Bounds for variables.  ``(min, max)`` pairs for each element in ``x``,
        defining the lower and upper bounds for the optimizing argument of
        `func`. It is required to have ``len(bounds) == len(x)``.
        ``len(bounds)`` is used to determine the number of parameters in ``x``.
    args : tuple, optional
        Any additional fixed parameters needed to
        completely specify the objective function.
    strategy : str, optional
        The differential evolution strategy to use. Should be one of:

            - 'best1bin'
            - 'best1exp'
            - 'rand1exp'
            - 'randtobest1exp'
            - 'currenttobest1exp'
            - 'best2exp'
            - 'rand2exp'
            - 'randtobest1bin'
            - 'currenttobest1bin'
            - 'best2bin'
            - 'rand2bin'
            - 'rand1bin'

        The default is 'best1bin'

    maxiter : int, optional
        The maximum number of generations over which the entire population is
        evolved. The maximum number of function evaluations (with no polishing)
        is: ``(maxiter + 1) * popsize * len(x)``
    popsize : int, optional
        A multiplier for setting the total population size.  The population has
        ``popsize * len(x)`` individuals (unless the initial population is
        supplied via the `init` keyword).
    tol : float, optional
        Relative tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    mutation : float or tuple(float, float), optional
        The mutation constant. In the literature this is also known as
        differential weight, being denoted by F.
        If specified as a float it should be in the range [0, 2].
        If specified as a tuple ``(min, max)`` dithering is employed. Dithering
        randomly changes the mutation constant on a generation by generation
        basis. The mutation constant for that generation is taken from
        U[min, max). Dithering can help speed convergence significantly.
        Increasing the mutation constant increases the search radius, but will
        slow down convergence.
    recombination : float, optional
        The recombination constant, should be in the range [0, 1]. In the
        literature this is also known as the crossover probability, being
        denoted by CR. Increasing this value allows a larger number of mutants
        to progress into the next generation, but at the risk of population
        stability.
    seed : int or `np.random.RandomState`, optional
        If `seed` is not specified the `np.random.RandomState` singleton is
        used.
        If `seed` is an int, a new `np.random.RandomState` instance is used,
        seeded with `seed`.
        If `seed` is already a `np.random.RandomState` instance, then that
        `np.random.RandomState` instance is used.
        Specify `seed` for repeatable minimizations.
    disp : bool, optional
        Display status messages
    callback : callable, `callback(xk, convergence=val)`, optional
        A function to follow the progress of the minimization. ``xk`` is
        the current value of ``x0``. ``val`` represents the fractional
        value of the population convergence.  When ``val`` is greater than one
        the function halts. If callback returns `True`, then the minimization
        is halted (any polishing is still carried out).
    polish : bool, optional
        If True, then `scipy.optimize.minimize` with the `L-BFGS-B` method
        is used to polish the best population member at the end. This requires
        a few more function evaluations.
    maxfun : int, optional
        Set the maximum number of function evaluations. However, it probably
        makes more sense to set `maxiter` instead.
    init : str or array-like, optional
        Specify which type of population initialization is performed. Should be
        one of:

            - 'latinhypercube'
            - 'random'
            - array specifying the initial population. The array should have
              shape ``(M, len(x))``, where len(x) is the number of parameters.
              `init` is clipped to `bounds` before use.

        The default is 'latinhypercube'. Latin Hypercube sampling tries to
        maximize coverage of the available parameter space. 'random'
        initializes the population randomly - this has the drawback that
        clustering can occur, preventing the whole of parameter space being
        covered. Use of an array to specify a population could be used, for
        example, to create a tight bunch of initial guesses in an location
        where the solution is known to exist, thereby reducing time for
        convergence.
    atol : float, optional
        Absolute tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    updating : {'immediate', 'deferred'}, optional
        If `immediate` the best solution vector is continuously updated within
        a single generation. This can lead to faster convergence as trial
        vectors can take advantage of continuous improvements in the best
        solution.
        With `deferred` the best solution vector is updated once per
        generation. Only `deferred` is compatible with parallelization, and the
        `workers` keyword can over-ride this option.
    workers : int or map-like callable, optional
        If `workers` is an int the population is subdivided into `workers`
        sections and evaluated in parallel (uses `multiprocessing.Pool`).
        Supply `-1` to use all cores available to the Process.
        Alternatively supply a map-like callable, such as
        `multiprocessing.Pool.map` for evaluating the population in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        This option will override the `updating` keyword to
        `updating='deferred'` if `workers != 1`.
        Requires that `func` be pickleable.

    """

    # Dispatch of mutation strategy method (binomial or exponential).
    _binomial = {'best1bin': '_best1',
                 'randtobest1bin': '_randtobest1',
                 'currenttobest1bin': '_currenttobest1',
                 'best2bin': '_best2',
                 'rand2bin': '_rand2',
                 'rand1bin': '_rand1'}
    _exponential = {'best1exp': '_best1',
                    'rand1exp': '_rand1',
                    'randtobest1exp': '_randtobest1',
                    'currenttobest1exp': '_currenttobest1',
                    'best2exp': '_best2',
                    'rand2exp': '_rand2'}

    __init_error_msg = ("The population initialization method must be one of "
                        "'latinhypercube' or 'random', or an array of shape "
                        "(M, N) where N is the number of parameters and M>5")

    def __init__(self, func, bounds, args=(),
                 strategy='best1bin', maxiter=1000, popsize=15,
                 tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None,
                 maxfun=np.inf, callback=None, disp=False, polish=True,
                 init='latinhypercube', atol=0, updating='immediate',
                 workers=1):

        if strategy in self._binomial:
            self.mutation_func = getattr(self, self._binomial[strategy])
        elif strategy in self._exponential:
            self.mutation_func = getattr(self, self._exponential[strategy])
        else:
            raise ValueError("Please select a valid mutation strategy")
        self.strategy = strategy

        self.callback = callback
        self.polish = polish

        # set the updating / parallelisation options
        if updating in ['immediate', 'deferred']:
            self._updating = updating

        # want to use parallelisation, but updating is immediate
        if workers != 1 and updating == 'immediate':
            warnings.warn("differential_evolution: the 'workers' keyword has"
                          " overridden updating='immediate' to"
                          " updating='deferred'", UserWarning)
            self._updating = 'deferred'

        # an object with a map method.
        self._mapwrapper = MapWrapper(workers)

        # relative and absolute tolerances for convergence
        self.tol, self.atol = tol, atol

        # Mutation constant should be in [0, 2). If specified as a sequence
        # then dithering is performed.
        self.scale = mutation
        if (not np.all(np.isfinite(mutation)) or
                np.any(np.array(mutation) >= 2) or
                np.any(np.array(mutation) < 0)):
            raise ValueError('The mutation constant must be a float in '
                             'U[0, 2), or specified as a tuple(min, max)'
                             ' where min < max and min, max are in U[0, 2).')

        self.dither = None
        if hasattr(mutation, '__iter__') and len(mutation) > 1:
            self.dither = [mutation[0], mutation[1]]
            self.dither.sort()

        self.cross_over_probability = recombination

        # we create a wrapped function to allow the use of map (and Pool.map
        # in the future)
        self.func = _FunctionWrapper(func, args)
        self.args = args

        # convert tuple of lower and upper bounds to limits
        # [(low_0, high_0), ..., (low_n, high_n]
        #     -> [[low_0, ..., low_n], [high_0, ..., high_n]]
        self.limits = np.array(bounds, dtype='float').T
        if (np.size(self.limits, 0) != 2 or not
                np.all(np.isfinite(self.limits))):
            raise ValueError('bounds should be a sequence containing '
                             'real valued (min, max) pairs for each value'
                             ' in x')

        if maxiter is None:  # the default used to be None
            maxiter = 1000
        self.maxiter = maxiter
        if maxfun is None:  # the default used to be None
            maxfun = np.inf
        self.maxfun = maxfun

        # population is scaled to between [0, 1].
        # We have to scale between parameter <-> population
        # save these arguments for _scale_parameter and
        # _unscale_parameter. This is an optimization
        self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
        self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])

        self.parameter_count = np.size(self.limits, 1)

        self.random_number_generator = check_random_state(seed)

        # default population initialization is a latin hypercube design, but
        # there are other population initializations possible.
        # the minimum is 5 because 'best2bin' requires a population that's at
        # least 5 long
        self.num_population_members = max(5, popsize * self.parameter_count)

        self.population_shape = (self.num_population_members,
                                 self.parameter_count)

        self._nfev = 0
        if isinstance(init, string_types):
            if init == 'latinhypercube':
                self.init_population_lhs()
            elif init == 'random':
                self.init_population_random()
            else:
                raise ValueError(self.__init_error_msg)
        else:
            self.init_population_array(init)

        self.disp = disp

    def init_population_lhs(self):
        """
        Initializes the population with Latin Hypercube Sampling.
        Latin Hypercube Sampling ensures that each parameter is uniformly
        sampled over its range.
        """
        rng = self.random_number_generator

        # Each parameter range needs to be sampled uniformly. The scaled
        # parameter range ([0, 1)) needs to be split into
        # `self.num_population_members` segments, each of which has the following
        # size:
        segsize = 1.0 / self.num_population_members

        # Within each segment we sample from a uniform random distribution.
        # We need to do this sampling for each parameter.
        samples = (segsize * rng.random_sample(self.population_shape)

        # Offset each segment to cover the entire parameter range [0, 1)
                   + np.linspace(0., 1., self.num_population_members,
                                 endpoint=False)[:, np.newaxis])

        # Create an array for population of candidate solutions.
        self.population = np.zeros_like(samples)

        # Initialize population of candidate solutions by permutation of the
        # random samples.
        for j in range(self.parameter_count):
            order = rng.permutation(range(self.num_population_members))
            self.population[:, j] = samples[order, j]

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_random(self):
        """
        Initialises the population at random.  This type of initialization
        can possess clustering, Latin Hypercube sampling is generally better.
        """
        rng = self.random_number_generator
        self.population = rng.random_sample(self.population_shape)

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_array(self, init):
        """
        Initialises the population with a user specified population.

        Parameters
        ----------
        init : np.ndarray
            Array specifying subset of the initial population. The array should
            have shape (M, len(x)), where len(x) is the number of parameters.
            The population is clipped to the lower and upper bounds.
        """
        # make sure you're using a float array
        popn = np.asfarray(init)

        if (np.size(popn, 0) < 5 or
                popn.shape[1] != self.parameter_count or
                len(popn.shape) != 2):
            raise ValueError("The population supplied needs to have shape"
                             " (M, len(x)), where M > 4.")

        # scale values and clip to bounds, assigning to population
        self.population = np.clip(self._unscale_parameters(popn), 0, 1)

        self.num_population_members = np.size(self.population, 0)

        self.population_shape = (self.num_population_members,
                                 self.parameter_count)

        # reset population energies
        self.population_energies = (np.ones(self.num_population_members) *
                                    np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    @property
    def x(self):
        """
        The best solution from the solver
        """
        return self._scale_parameters(self.population[0])

    @property
    def convergence(self):
        """
        The standard deviation of the population energies divided by their
        mean.
        """
        if np.any(np.isinf(self.population_energies)):
            return np.inf
        return (np.std(self.population_energies) /
                np.abs(np.mean(self.population_energies) + _MACHEPS))

    def converged(self):
        """
        Return True if the solver has converged.
        """
        return (np.std(self.population_energies) <=
                self.atol +
                self.tol * np.abs(np.mean(self.population_energies)))

    def solve(self):
        """
        Runs the DifferentialEvolutionSolver.

        Returns
        -------
        res : OptimizeResult
            The optimization result represented as a ``OptimizeResult`` object.
            Important attributes are: ``x`` the solution array, ``success`` a
            Boolean flag indicating if the optimizer exited successfully and
            ``message`` which describes the cause of the termination. See
            `OptimizeResult` for a description of other attributes.  If `polish`
            was employed, and a lower minimum was obtained by the polishing,
            then OptimizeResult also contains the ``jac`` attribute.
        """
        nit, warning_flag = 0, False
        status_message = _status_message['success']

        # The population may have just been initialized (all entries are
        # np.inf). If it has you have to calculate the initial energies.
        # Although this is also done in the evolve generator it's possible
        # that someone can set maxiter=0, at which point we still want the
        # initial energies to be calculated (the following loop isn't run).
        if np.all(np.isinf(self.population_energies)):
            self.population_energies[:] = self._calculate_population_energies(
                self.population)
            self._promote_lowest_energy()

        # do the optimisation.
        for nit in xrange(1, self.maxiter + 1):
            # evolve the population by a generation
            try:
                next(self)
            except StopIteration:
                warning_flag = True
                if self._nfev > self.maxfun:
                    status_message = _status_message['maxfev']
                elif self._nfev == self.maxfun:
                    status_message = ('Maximum number of function evaluations'
                                      ' has been reached.')
                break

            if self.disp:
                print("differential_evolution step %d: f(x)= %g"
                      % (nit,
                         self.population_energies[0]))

            # should the solver terminate?
            convergence = self.convergence

            if (self.callback and
                    self.callback(self._scale_parameters(self.population[0]),
                                  convergence=self.tol / convergence) is True):

                warning_flag = True
                status_message = ('callback function requested stop early '
                                  'by returning True')
                break

            if np.any(np.isinf(self.population_energies)):
                intol = False
            else:
                intol = (np.std(self.population_energies) <=
                         self.atol +
                         self.tol * np.abs(np.mean(self.population_energies)))
            if warning_flag or intol:
                break

        else:
            status_message = _status_message['maxiter']
            warning_flag = True

        DE_result = OptimizeResult(
            x=self.x,
            fun=self.population_energies[0],
            nfev=self._nfev,
            nit=nit,
            message=status_message,
            success=(warning_flag is not True))

        if self.polish:
            result = minimize(self.func,
                              np.copy(DE_result.x),
                              method='L-BFGS-B',
                              bounds=self.limits.T)

            self._nfev += result.nfev
            DE_result.nfev = self._nfev

            if result.fun < DE_result.fun:
                DE_result.fun = result.fun
                DE_result.x = result.x
                DE_result.jac = result.jac
                # to keep internal state consistent
                self.population_energies[0] = result.fun
                self.population[0] = self._unscale_parameters(result.x)

        return DE_result

    def _calculate_population_energies(self, population):
        """
        Calculate the energies of all the population members at the same time.

        Parameters
        ----------
        population : ndarray
            An array of parameter vectors normalised to [0, 1] using lower
            and upper limits. Has shape ``(np.size(population, 0), len(x))``.

        Returns
        -------
        energies : ndarray
            An array of energies corresponding to each population member. If
            maxfun will be exceeded during this call, then the number of
            function evaluations will be reduced and energies will be
            right-padded with np.inf. Has shape ``(np.size(population, 0),)``
        """
        num_members = np.size(population, 0)
        nfevs = min(num_members,
                    self.maxfun - num_members)

        energies = np.full(num_members, np.inf)

        parameters_pop = self._scale_parameters(population)
        try:
            calc_energies = list(self._mapwrapper(self.func,
                                                  parameters_pop[0:nfevs]))
            energies[0:nfevs] = calc_energies
        except (TypeError, ValueError):
            # wrong number of arguments for _mapwrapper
            # or wrong length returned from the mapper
            raise RuntimeError("The map-like callable must be of the"
                               " form f(func, iterable), returning a sequence"
                               " of numbers the same length as 'iterable'")

        self._nfev += nfevs

        return energies

    def _promote_lowest_energy(self):
        # promotes the lowest energy to the first entry in the population
        l = np.argmin(self.population_energies)

        # put the lowest energy into the best solution position.
        self.population_energies[[0, l]] = self.population_energies[[l, 0]]
        self.population[[0, l], :] = self.population[[l, 0], :]

    def __iter__(self):
        return self

    def __enter__(self):
        return self

    def __exit__(self, *args):
        # to make sure resources are closed down
        self._mapwrapper.close()

    def __del__(self):
        # to make sure resources are closed down
        self._mapwrapper.close()

    def __next__(self):
        """
        Evolve the population by a single generation

        Returns
        -------
        x : ndarray
            The best solution from the solver.
        fun : float
            Value of objective function obtained from the best solution.
        """
        # the population may have just been initialized (all entries are
        # np.inf). If it has you have to calculate the initial energies
        if np.all(np.isinf(self.population_energies)):
            self.population_energies[:] = self._calculate_population_energies(
                self.population)
            self._promote_lowest_energy()

        if self.dither is not None:
            self.scale = (self.random_number_generator.rand()
                          * (self.dither[1] - self.dither[0]) + self.dither[0])

        if self._updating == 'immediate':
            # update best solution immediately
            for candidate in range(self.num_population_members):
                if self._nfev > self.maxfun:
                    raise StopIteration

                # create a trial solution
                trial = self._mutate(candidate)

                # ensuring that it's in the range [0, 1)
                self._ensure_constraint(trial)

                # scale from [0, 1) to the actual parameter value
                parameters = self._scale_parameters(trial)

                # determine the energy of the objective function
                energy = self.func(parameters)
                self._nfev += 1

                # if the energy of the trial candidate is lower than the
                # original population member then replace it
                if energy < self.population_energies[candidate]:
                    self.population[candidate] = trial
                    self.population_energies[candidate] = energy

                    # if the trial candidate also has a lower energy than the
                    # best solution then promote it to the best solution.
                    if energy < self.population_energies[0]:
                        self._promote_lowest_energy()

        elif self._updating == 'deferred':
            # update best solution once per generation
            if self._nfev >= self.maxfun:
                raise StopIteration

            # 'deferred' approach, vectorised form.
            # create trial solutions
            trial_pop = np.array(
                [self._mutate(i) for i in range(self.num_population_members)])

            # enforce bounds
            self._ensure_constraint(trial_pop)

            # determine the energies of the objective function
            trial_energies = self._calculate_population_energies(trial_pop)

            # which solutions are improved?
            loc = trial_energies < self.population_energies
            self.population = np.where(loc[:, np.newaxis],
                                       trial_pop,
                                       self.population)
            self.population_energies = np.where(loc,
                                                trial_energies,
                                                self.population_energies)

            # make sure the best solution is updated if updating='deferred'.
            # put the lowest energy into the best solution position.
            self._promote_lowest_energy()

        return self.x, self.population_energies[0]

    next = __next__

    def _scale_parameters(self, trial):
        """Scale from a number between 0 and 1 to parameters."""
        return self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2

    def _unscale_parameters(self, parameters):
        """Scale from parameters to a number between 0 and 1."""
        return (parameters - self.__scale_arg1) / self.__scale_arg2 + 0.5

    def _ensure_constraint(self, trial):
        """Make sure the parameters lie between the limits."""
        mask = np.where((trial > 1) | (trial < 0))
        trial[mask] = self.random_number_generator.rand(mask[0].size)

    def _mutate(self, candidate):
        """Create a trial vector based on a mutation strategy."""
        trial = np.copy(self.population[candidate])

        rng = self.random_number_generator

        fill_point = rng.randint(0, self.parameter_count)

        if self.strategy in ['currenttobest1exp', 'currenttobest1bin']:
            bprime = self.mutation_func(candidate,
                                        self._select_samples(candidate, 5))
        else:
            bprime = self.mutation_func(self._select_samples(candidate, 5))

        if self.strategy in self._binomial:
            crossovers = rng.rand(self.parameter_count)
            crossovers = crossovers < self.cross_over_probability
            # the last one is always from the bprime vector for binomial
            # If you fill in modulo with a loop you have to set the last one to
            # true. If you don't use a loop then you can have any random entry
            # be True.
            crossovers[fill_point] = True
            trial = np.where(crossovers, bprime, trial)
            return trial

        elif self.strategy in self._exponential:
            i = 0
            while (i < self.parameter_count and
                   rng.rand() < self.cross_over_probability):

                trial[fill_point] = bprime[fill_point]
                fill_point = (fill_point + 1) % self.parameter_count
                i += 1

            return trial

    def _best1(self, samples):
        """best1bin, best1exp"""
        r0, r1 = samples[:2]
        return (self.population[0] + self.scale *
                (self.population[r0] - self.population[r1]))

    def _rand1(self, samples):
        """rand1bin, rand1exp"""
        r0, r1, r2 = samples[:3]
        return (self.population[r0] + self.scale *
                (self.population[r1] - self.population[r2]))

    def _randtobest1(self, samples):
        """randtobest1bin, randtobest1exp"""
        r0, r1, r2 = samples[:3]
        bprime = np.copy(self.population[r0])
        bprime += self.scale * (self.population[0] - bprime)
        bprime += self.scale * (self.population[r1] -
                                self.population[r2])
        return bprime

    def _currenttobest1(self, candidate, samples):
        """currenttobest1bin, currenttobest1exp"""
        r0, r1 = samples[:2]
        bprime = (self.population[candidate] + self.scale *
                  (self.population[0] - self.population[candidate] +
                   self.population[r0] - self.population[r1]))
        return bprime

    def _best2(self, samples):
        """best2bin, best2exp"""
        r0, r1, r2, r3 = samples[:4]
        bprime = (self.population[0] + self.scale *
                  (self.population[r0] + self.population[r1] -
                   self.population[r2] - self.population[r3]))

        return bprime

    def _rand2(self, samples):
        """rand2bin, rand2exp"""
        r0, r1, r2, r3, r4 = samples
        bprime = (self.population[r0] + self.scale *
                  (self.population[r1] + self.population[r2] -
                   self.population[r3] - self.population[r4]))

        return bprime

    def _select_samples(self, candidate, number_samples):
        """
        obtain random integers from range(self.num_population_members),
        without replacement.  You can't have the original candidate either.
        """
        idxs = list(range(self.num_population_members))
        idxs.remove(candidate)
        self.random_number_generator.shuffle(idxs)
        idxs = idxs[:number_samples]
        return idxs
示例#6
0
class DifferentialEvolutionSolver(object):
    """This class implements the differential evolution solver

    Parameters
    ----------
    func : callable
        The objective function to be minimized.  Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    bounds : sequence
        Bounds for variables.  ``(min, max)`` pairs for each element in ``x``,
        defining the lower and upper bounds for the optimizing argument of
        `func`. It is required to have ``len(bounds) == len(x)``.
        ``len(bounds)`` is used to determine the number of parameters in ``x``.
    args : tuple, optional
        Any additional fixed parameters needed to
        completely specify the objective function.
    strategy : str, optional
        The differential evolution strategy to use. Should be one of:

            - 'best1bin'
            - 'best1exp'
            - 'rand1exp'
            - 'randtobest1exp'
            - 'currenttobest1exp'
            - 'best2exp'
            - 'rand2exp'
            - 'randtobest1bin'
            - 'currenttobest1bin'
            - 'best2bin'
            - 'rand2bin'
            - 'rand1bin'

        The default is 'best1bin'

    maxiter : int, optional
        The maximum number of generations over which the entire population is
        evolved. The maximum number of function evaluations (with no polishing)
        is: ``(maxiter + 1) * popsize * len(x)``
    popsize : int, optional
        A multiplier for setting the total population size.  The population has
        ``popsize * len(x)`` individuals (unless the initial population is
        supplied via the `init` keyword).
    tol : float, optional
        Relative tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    mutation : float or tuple(float, float), optional
        The mutation constant. In the literature this is also known as
        differential weight, being denoted by F.
        If specified as a float it should be in the range [0, 2].
        If specified as a tuple ``(min, max)`` dithering is employed. Dithering
        randomly changes the mutation constant on a generation by generation
        basis. The mutation constant for that generation is taken from
        U[min, max). Dithering can help speed convergence significantly.
        Increasing the mutation constant increases the search radius, but will
        slow down convergence.
    recombination : float, optional
        The recombination constant, should be in the range [0, 1]. In the
        literature this is also known as the crossover probability, being
        denoted by CR. Increasing this value allows a larger number of mutants
        to progress into the next generation, but at the risk of population
        stability.
    seed : int or `np.random.RandomState`, optional
        If `seed` is not specified the `np.random.RandomState` singleton is
        used.
        If `seed` is an int, a new `np.random.RandomState` instance is used,
        seeded with `seed`.
        If `seed` is already a `np.random.RandomState` instance, then that
        `np.random.RandomState` instance is used.
        Specify `seed` for repeatable minimizations.
    disp : bool, optional
        Display status messages
    callback : callable, `callback(xk, convergence=val)`, optional
        A function to follow the progress of the minimization. ``xk`` is
        the current value of ``x0``. ``val`` represents the fractional
        value of the population convergence.  When ``val`` is greater than one
        the function halts. If callback returns `True`, then the minimization
        is halted (any polishing is still carried out).
    polish : bool, optional
        If True, then `scipy.optimize.minimize` with the `L-BFGS-B` method
        is used to polish the best population member at the end. This requires
        a few more function evaluations.
    maxfun : int, optional
        Set the maximum number of function evaluations. However, it probably
        makes more sense to set `maxiter` instead.
    init : str or array-like, optional
        Specify which type of population initialization is performed. Should be
        one of:

            - 'latinhypercube'
            - 'random'
            - array specifying the initial population. The array should have
              shape ``(M, len(x))``, where len(x) is the number of parameters.
              `init` is clipped to `bounds` before use.

        The default is 'latinhypercube'. Latin Hypercube sampling tries to
        maximize coverage of the available parameter space. 'random'
        initializes the population randomly - this has the drawback that
        clustering can occur, preventing the whole of parameter space being
        covered. Use of an array to specify a population could be used, for
        example, to create a tight bunch of initial guesses in an location
        where the solution is known to exist, thereby reducing time for
        convergence.
    atol : float, optional
        Absolute tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    updating : {'immediate', 'deferred'}, optional
        If `immediate` the best solution vector is continuously updated within
        a single generation. This can lead to faster convergence as trial
        vectors can take advantage of continuous improvements in the best
        solution.
        With `deferred` the best solution vector is updated once per
        generation. Only `deferred` is compatible with parallelization, and the
        `workers` keyword can over-ride this option.
    workers : int or map-like callable, optional
        If `workers` is an int the population is subdivided into `workers`
        sections and evaluated in parallel (uses `multiprocessing.Pool`).
        Supply `-1` to use all cores available to the Process.
        Alternatively supply a map-like callable, such as
        `multiprocessing.Pool.map` for evaluating the population in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        This option will override the `updating` keyword to
        `updating='deferred'` if `workers != 1`.
        Requires that `func` be pickleable.

    """

    # Dispatch of mutation strategy method (binomial or exponential).
    _binomial = {
        'best1bin': '_best1',
        'randtobest1bin': '_randtobest1',
        'currenttobest1bin': '_currenttobest1',
        'best2bin': '_best2',
        'rand2bin': '_rand2',
        'rand1bin': '_rand1'
    }
    _exponential = {
        'best1exp': '_best1',
        'rand1exp': '_rand1',
        'randtobest1exp': '_randtobest1',
        'currenttobest1exp': '_currenttobest1',
        'best2exp': '_best2',
        'rand2exp': '_rand2'
    }

    __init_error_msg = ("The population initialization method must be one of "
                        "'latinhypercube' or 'random', or an array of shape "
                        "(M, N) where N is the number of parameters and M>5")

    def __init__(self,
                 func,
                 bounds,
                 args=(),
                 strategy='best1bin',
                 maxiter=1000,
                 popsize=15,
                 tol=0.01,
                 mutation=(0.5, 1),
                 recombination=0.7,
                 seed=None,
                 maxfun=np.inf,
                 callback=None,
                 disp=False,
                 polish=True,
                 init='latinhypercube',
                 atol=0,
                 updating='immediate',
                 workers=1):

        if strategy in self._binomial:
            self.mutation_func = getattr(self, self._binomial[strategy])
        elif strategy in self._exponential:
            self.mutation_func = getattr(self, self._exponential[strategy])
        else:
            raise ValueError("Please select a valid mutation strategy")
        self.strategy = strategy

        self.callback = callback
        self.polish = polish

        # set the updating / parallelisation options
        if updating in ['immediate', 'deferred']:
            self._updating = updating

        # want to use parallelisation, but updating is immediate
        if workers != 1 and updating == 'immediate':
            warnings.warn(
                "differential_evolution: the 'workers' keyword has"
                " overridden updating='immediate' to"
                " updating='deferred'", UserWarning)
            self._updating = 'deferred'

        # an object with a map method.
        self._mapwrapper = MapWrapper(workers)

        # relative and absolute tolerances for convergence
        self.tol, self.atol = tol, atol

        # Mutation constant should be in [0, 2). If specified as a sequence
        # then dithering is performed.
        self.scale = mutation
        if (not np.all(np.isfinite(mutation))
                or np.any(np.array(mutation) >= 2)
                or np.any(np.array(mutation) < 0)):
            raise ValueError('The mutation constant must be a float in '
                             'U[0, 2), or specified as a tuple(min, max)'
                             ' where min < max and min, max are in U[0, 2).')

        self.dither = None
        if hasattr(mutation, '__iter__') and len(mutation) > 1:
            self.dither = [mutation[0], mutation[1]]
            self.dither.sort()

        self.cross_over_probability = recombination

        # we create a wrapped function to allow the use of map (and Pool.map
        # in the future)
        self.func = _FunctionWrapper(func, args)
        self.args = args

        # convert tuple of lower and upper bounds to limits
        # [(low_0, high_0), ..., (low_n, high_n]
        #     -> [[low_0, ..., low_n], [high_0, ..., high_n]]
        self.limits = np.array(bounds, dtype='float').T
        if (np.size(self.limits, 0) != 2
                or not np.all(np.isfinite(self.limits))):
            raise ValueError('bounds should be a sequence containing '
                             'real valued (min, max) pairs for each value'
                             ' in x')

        if maxiter is None:  # the default used to be None
            maxiter = 1000
        self.maxiter = maxiter
        if maxfun is None:  # the default used to be None
            maxfun = np.inf
        self.maxfun = maxfun

        # population is scaled to between [0, 1].
        # We have to scale between parameter <-> population
        # save these arguments for _scale_parameter and
        # _unscale_parameter. This is an optimization
        self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
        self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])

        self.parameter_count = np.size(self.limits, 1)

        self.random_number_generator = check_random_state(seed)

        # default population initialization is a latin hypercube design, but
        # there are other population initializations possible.
        # the minimum is 5 because 'best2bin' requires a population that's at
        # least 5 long
        self.num_population_members = max(5, popsize * self.parameter_count)

        self.population_shape = (self.num_population_members,
                                 self.parameter_count)

        self._nfev = 0
        if isinstance(init, string_types):
            if init == 'latinhypercube':
                self.init_population_lhs()
            elif init == 'random':
                self.init_population_random()
            else:
                raise ValueError(self.__init_error_msg)
        else:
            self.init_population_array(init)

        self.disp = disp

    def init_population_lhs(self):
        """
        Initializes the population with Latin Hypercube Sampling.
        Latin Hypercube Sampling ensures that each parameter is uniformly
        sampled over its range.
        """
        rng = self.random_number_generator

        # Each parameter range needs to be sampled uniformly. The scaled
        # parameter range ([0, 1)) needs to be split into
        # `self.num_population_members` segments, each of which has the following
        # size:
        segsize = 1.0 / self.num_population_members

        # Within each segment we sample from a uniform random distribution.
        # We need to do this sampling for each parameter.
        samples = (
            segsize * rng.random_sample(self.population_shape)

            # Offset each segment to cover the entire parameter range [0, 1)
            + np.linspace(0., 1., self.num_population_members,
                          endpoint=False)[:, np.newaxis])

        # Create an array for population of candidate solutions.
        self.population = np.zeros_like(samples)

        # Initialize population of candidate solutions by permutation of the
        # random samples.
        for j in range(self.parameter_count):
            order = rng.permutation(range(self.num_population_members))
            self.population[:, j] = samples[order, j]

        # reset population energies
        self.population_energies = np.full(self.num_population_members, np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_random(self):
        """
        Initialises the population at random.  This type of initialization
        can possess clustering, Latin Hypercube sampling is generally better.
        """
        rng = self.random_number_generator
        self.population = rng.random_sample(self.population_shape)

        # reset population energies
        self.population_energies = np.full(self.num_population_members, np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_array(self, init):
        """
        Initialises the population with a user specified population.

        Parameters
        ----------
        init : np.ndarray
            Array specifying subset of the initial population. The array should
            have shape (M, len(x)), where len(x) is the number of parameters.
            The population is clipped to the lower and upper bounds.
        """
        # make sure you're using a float array
        popn = np.asfarray(init)

        if (np.size(popn, 0) < 5 or popn.shape[1] != self.parameter_count
                or len(popn.shape) != 2):
            raise ValueError("The population supplied needs to have shape"
                             " (M, len(x)), where M > 4.")

        # scale values and clip to bounds, assigning to population
        self.population = np.clip(self._unscale_parameters(popn), 0, 1)

        self.num_population_members = np.size(self.population, 0)

        self.population_shape = (self.num_population_members,
                                 self.parameter_count)

        # reset population energies
        self.population_energies = (np.ones(self.num_population_members) *
                                    np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    @property
    def x(self):
        """
        The best solution from the solver
        """
        return self._scale_parameters(self.population[0])

    @property
    def convergence(self):
        """
        The standard deviation of the population energies divided by their
        mean.
        """
        if np.any(np.isinf(self.population_energies)):
            return np.inf
        return (np.std(self.population_energies) /
                np.abs(np.mean(self.population_energies) + _MACHEPS))

    def converged(self):
        """
        Return True if the solver has converged.
        """
        return (np.std(self.population_energies) <= self.atol +
                self.tol * np.abs(np.mean(self.population_energies)))

    def solve(self):
        """
        Runs the DifferentialEvolutionSolver.

        Returns
        -------
        res : OptimizeResult
            The optimization result represented as a ``OptimizeResult`` object.
            Important attributes are: ``x`` the solution array, ``success`` a
            Boolean flag indicating if the optimizer exited successfully and
            ``message`` which describes the cause of the termination. See
            `OptimizeResult` for a description of other attributes.  If `polish`
            was employed, and a lower minimum was obtained by the polishing,
            then OptimizeResult also contains the ``jac`` attribute.
        """
        nit, warning_flag = 0, False
        status_message = _status_message['success']

        # The population may have just been initialized (all entries are
        # np.inf). If it has you have to calculate the initial energies.
        # Although this is also done in the evolve generator it's possible
        # that someone can set maxiter=0, at which point we still want the
        # initial energies to be calculated (the following loop isn't run).
        if np.all(np.isinf(self.population_energies)):
            self.population_energies[:] = self._calculate_population_energies(
                self.population)
            self._promote_lowest_energy()

        # do the optimisation.
        for nit in xrange(1, self.maxiter + 1):
            # evolve the population by a generation
            try:
                next(self)
            except StopIteration:
                warning_flag = True
                if self._nfev > self.maxfun:
                    status_message = _status_message['maxfev']
                elif self._nfev == self.maxfun:
                    status_message = ('Maximum number of function evaluations'
                                      ' has been reached.')
                break

            if self.disp:
                print("differential_evolution step %d: f(x)= %g" %
                      (nit, self.population_energies[0]))

            # should the solver terminate?
            convergence = self.convergence

            if (self.callback and
                    self.callback(self._scale_parameters(self.population[0]),
                                  convergence=self.tol / convergence) is True):

                warning_flag = True
                status_message = ('callback function requested stop early '
                                  'by returning True')
                break

            if np.any(np.isinf(self.population_energies)):
                intol = False
            else:
                intol = (np.std(self.population_energies) <= self.atol +
                         self.tol * np.abs(np.mean(self.population_energies)))
            if warning_flag or intol:
                break

        else:
            status_message = _status_message['maxiter']
            warning_flag = True

        DE_result = OptimizeResult(x=self.x,
                                   fun=self.population_energies[0],
                                   nfev=self._nfev,
                                   nit=nit,
                                   message=status_message,
                                   success=(warning_flag is not True))

        if self.polish:
            result = minimize(self.func,
                              np.copy(DE_result.x),
                              method='L-BFGS-B',
                              bounds=self.limits.T)

            self._nfev += result.nfev
            DE_result.nfev = self._nfev

            if result.fun < DE_result.fun:
                DE_result.fun = result.fun
                DE_result.x = result.x
                DE_result.jac = result.jac
                # to keep internal state consistent
                self.population_energies[0] = result.fun
                self.population[0] = self._unscale_parameters(result.x)

        return DE_result

    def _calculate_population_energies(self, population):
        """
        Calculate the energies of all the population members at the same time.

        Parameters
        ----------
        population : ndarray
            An array of parameter vectors normalised to [0, 1] using lower
            and upper limits. Has shape ``(np.size(population, 0), len(x))``.

        Returns
        -------
        energies : ndarray
            An array of energies corresponding to each population member. If
            maxfun will be exceeded during this call, then the number of
            function evaluations will be reduced and energies will be
            right-padded with np.inf. Has shape ``(np.size(population, 0),)``
        """
        num_members = np.size(population, 0)
        nfevs = min(num_members, self.maxfun - num_members)

        energies = np.full(num_members, np.inf)

        parameters_pop = self._scale_parameters(population)
        try:
            calc_energies = list(
                self._mapwrapper(self.func, parameters_pop[0:nfevs]))
            energies[0:nfevs] = calc_energies
        except (TypeError, ValueError):
            # wrong number of arguments for _mapwrapper
            # or wrong length returned from the mapper
            raise RuntimeError("The map-like callable must be of the"
                               " form f(func, iterable), returning a sequence"
                               " of numbers the same length as 'iterable'")

        self._nfev += nfevs

        return energies

    def _promote_lowest_energy(self):
        # promotes the lowest energy to the first entry in the population
        l = np.argmin(self.population_energies)

        # put the lowest energy into the best solution position.
        self.population_energies[[0, l]] = self.population_energies[[l, 0]]
        self.population[[0, l], :] = self.population[[l, 0], :]

    def __iter__(self):
        return self

    def __enter__(self):
        return self

    def __exit__(self, *args):
        # to make sure resources are closed down
        self._mapwrapper.close()

    def __del__(self):
        # to make sure resources are closed down
        self._mapwrapper.close()

    def __next__(self):
        """
        Evolve the population by a single generation

        Returns
        -------
        x : ndarray
            The best solution from the solver.
        fun : float
            Value of objective function obtained from the best solution.
        """
        # the population may have just been initialized (all entries are
        # np.inf). If it has you have to calculate the initial energies
        if np.all(np.isinf(self.population_energies)):
            self.population_energies[:] = self._calculate_population_energies(
                self.population)
            self._promote_lowest_energy()

        if self.dither is not None:
            self.scale = (self.random_number_generator.rand() *
                          (self.dither[1] - self.dither[0]) + self.dither[0])

        if self._updating == 'immediate':
            # update best solution immediately
            for candidate in range(self.num_population_members):
                if self._nfev > self.maxfun:
                    raise StopIteration

                # create a trial solution
                trial = self._mutate(candidate)

                # ensuring that it's in the range [0, 1)
                self._ensure_constraint(trial)

                # scale from [0, 1) to the actual parameter value
                parameters = self._scale_parameters(trial)

                # determine the energy of the objective function
                energy = self.func(parameters)
                self._nfev += 1

                # if the energy of the trial candidate is lower than the
                # original population member then replace it
                if energy < self.population_energies[candidate]:
                    self.population[candidate] = trial
                    self.population_energies[candidate] = energy

                    # if the trial candidate also has a lower energy than the
                    # best solution then promote it to the best solution.
                    if energy < self.population_energies[0]:
                        self._promote_lowest_energy()

        elif self._updating == 'deferred':
            # update best solution once per generation
            if self._nfev >= self.maxfun:
                raise StopIteration

            # 'deferred' approach, vectorised form.
            # create trial solutions
            trial_pop = np.array(
                [self._mutate(i) for i in range(self.num_population_members)])

            # enforce bounds
            self._ensure_constraint(trial_pop)

            # determine the energies of the objective function
            trial_energies = self._calculate_population_energies(trial_pop)

            # which solutions are improved?
            loc = trial_energies < self.population_energies
            self.population = np.where(loc[:, np.newaxis], trial_pop,
                                       self.population)
            self.population_energies = np.where(loc, trial_energies,
                                                self.population_energies)

            # make sure the best solution is updated if updating='deferred'.
            # put the lowest energy into the best solution position.
            self._promote_lowest_energy()

        return self.x, self.population_energies[0]

    next = __next__

    def _scale_parameters(self, trial):
        """Scale from a number between 0 and 1 to parameters."""
        return self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2

    def _unscale_parameters(self, parameters):
        """Scale from parameters to a number between 0 and 1."""
        return (parameters - self.__scale_arg1) / self.__scale_arg2 + 0.5

    def _ensure_constraint(self, trial):
        """Make sure the parameters lie between the limits."""
        mask = np.where((trial > 1) | (trial < 0))
        trial[mask] = self.random_number_generator.rand(mask[0].size)

    def _mutate(self, candidate):
        """Create a trial vector based on a mutation strategy."""
        trial = np.copy(self.population[candidate])

        rng = self.random_number_generator

        fill_point = rng.randint(0, self.parameter_count)

        if self.strategy in ['currenttobest1exp', 'currenttobest1bin']:
            bprime = self.mutation_func(candidate,
                                        self._select_samples(candidate, 5))
        else:
            bprime = self.mutation_func(self._select_samples(candidate, 5))

        if self.strategy in self._binomial:
            crossovers = rng.rand(self.parameter_count)
            crossovers = crossovers < self.cross_over_probability
            # the last one is always from the bprime vector for binomial
            # If you fill in modulo with a loop you have to set the last one to
            # true. If you don't use a loop then you can have any random entry
            # be True.
            crossovers[fill_point] = True
            trial = np.where(crossovers, bprime, trial)
            return trial

        elif self.strategy in self._exponential:
            i = 0
            while (i < self.parameter_count
                   and rng.rand() < self.cross_over_probability):

                trial[fill_point] = bprime[fill_point]
                fill_point = (fill_point + 1) % self.parameter_count
                i += 1

            return trial

    def _best1(self, samples):
        """best1bin, best1exp"""
        r0, r1 = samples[:2]
        return (self.population[0] + self.scale *
                (self.population[r0] - self.population[r1]))

    def _rand1(self, samples):
        """rand1bin, rand1exp"""
        r0, r1, r2 = samples[:3]
        return (self.population[r0] + self.scale *
                (self.population[r1] - self.population[r2]))

    def _randtobest1(self, samples):
        """randtobest1bin, randtobest1exp"""
        r0, r1, r2 = samples[:3]
        bprime = np.copy(self.population[r0])
        bprime += self.scale * (self.population[0] - bprime)
        bprime += self.scale * (self.population[r1] - self.population[r2])
        return bprime

    def _currenttobest1(self, candidate, samples):
        """currenttobest1bin, currenttobest1exp"""
        r0, r1 = samples[:2]
        bprime = (self.population[candidate] + self.scale *
                  (self.population[0] - self.population[candidate] +
                   self.population[r0] - self.population[r1]))
        return bprime

    def _best2(self, samples):
        """best2bin, best2exp"""
        r0, r1, r2, r3 = samples[:4]
        bprime = (self.population[0] + self.scale *
                  (self.population[r0] + self.population[r1] -
                   self.population[r2] - self.population[r3]))

        return bprime

    def _rand2(self, samples):
        """rand2bin, rand2exp"""
        r0, r1, r2, r3, r4 = samples
        bprime = (self.population[r0] + self.scale *
                  (self.population[r1] + self.population[r2] -
                   self.population[r3] - self.population[r4]))

        return bprime

    def _select_samples(self, candidate, number_samples):
        """
        obtain random integers from range(self.num_population_members),
        without replacement.  You can't have the original candidate either.
        """
        idxs = list(range(self.num_population_members))
        idxs.remove(candidate)
        self.random_number_generator.shuffle(idxs)
        idxs = idxs[:number_samples]
        return idxs