def idct_2d_ref(x, **kwargs): """Calculate reference values for testing idct2.""" x = np.array(x, copy=True) for row in range(x.shape[0]): x[row, :] = idct(x[row, :], **kwargs) for col in range(x.shape[1]): x[:, col] = idct(x[:, col], **kwargs) return x
def test_definition(self): for i in FFTWDATA_SIZES: xr, yr, dt = fftw_dct_ref(self.type, i, self.rdt) x = idct(yr, type=self.type) assert_equal(x.dtype, dt) # XXX: we divide by np.max(y) because the tests fail otherwise. We # should really use something like assert_array_approx_equal. The # difference is due to fftw using a better algorithm w.r.t error # propagation compared to the ones from fftpack. assert_array_almost_equal(x / np.max(x), xr / np.max(x), decimal=self.dec, err_msg="Size %d failed" % i)
def test_idct_definition(fftwdata_size, rdt, type): xr, yr, dt = fftw_dct_ref(type, fftwdata_size, rdt) x = idct(yr, type=type) dec = dec_map[(idct, rdt, type)] assert_equal(x.dtype, dt) assert_allclose(x, xr, rtol=0., atol=np.max(xr)*10**(-dec))
def test_idct_complex(self): y = idct(np.arange(5)*1j) x = 1j*idct(np.arange(5)) assert_array_almost_equal(x, y)