示例#1
0
    def test_ParamPoly(self):
        tangentX = np.array([9.389829642616592, -7.596531772501544])
        tangentY = np.array([0.0, 5.5192033616035365])

        t = np.array([0, 1])
        x = np.array([0, 17.8605173461395])
        y = np.array([0, -5.803233839653106])
        hermiteX = CubicHermiteSpline(t, x, tangentX)

        hermiteY = CubicHermiteSpline(t, y, tangentY)
        xCoeffs = hermiteX.c.flatten()
        yCoeffs = hermiteY.c.flatten()

        # scipy coefficient and open drive coefficents have opposite order.
        myRoad = self.roadBuilder.curveBuilder.createParamPoly3(
            0,
            isJunction=False,
            au=xCoeffs[3],
            bu=xCoeffs[2],
            cu=xCoeffs[1],
            du=xCoeffs[0],
            av=yCoeffs[3],
            bv=yCoeffs[2],
            cv=yCoeffs[1],
            dv=yCoeffs[0])

        odr = pyodrx.OpenDrive("test")
        odr.add_road(myRoad)
        odr.adjust_roads_and_lanes()

        extensions.printRoadPositions(odr)

        extensions.view_road(
            odr, os.path.join('..', self.configuration.get("esminipath")))
示例#2
0
    def poststep_estimate_spike_cspline(self, solver):
        """Use cublic spline through previous points to find spike.
        Can be use for all methods, but is not as precise as using the dense output."""
        spiked = solver.y_new[0] >= 30.

        if spiked:
            assert solver.adaptive

            knot_ys = np.vstack(
                [np.array(solver.solution.ys[-9:]), solver.y_new])
            knot_ts = np.append(np.array(solver.solution.ts[-9:]),
                                solver.t_new)

            assert knot_ys.shape[0] == knot_ts.shape[0], knot_ys.shape

            if len(solver.solution.events[0]) > 0:
                last_event_t = solver.solution.events[0][-1]
            else:
                last_event_t = np.NINF

            knot_idxs = knot_ts > last_event_t

            knot_ts = knot_ts[knot_idxs]
            knot_ys = knot_ys[knot_idxs, :]
            knot_ydots = np.array([
                solver.eval_odefun(t, y, count=False)
                for t, y in zip(knot_ts, knot_ys)
            ])

            assert knot_ydots.shape == knot_ys.shape, knot_ydots.shape
            assert knot_ys.shape[0] >= 2, knot_ys

            v_spline = CubicHermiteSpline(x=knot_ts,
                                          y=knot_ys[:, 0] - 30,
                                          dydx=knot_ydots[:, 0],
                                          extrapolate=False)
            roots = v_spline.roots()
            t_est = roots[(roots >= solver.t) & (roots <= solver.t_new)][0]

            solver.t_new = t_est
            solver.h = solver.t_new - solver.t

            u_spline = CubicHermiteSpline(x=knot_ts,
                                          y=knot_ys[:, 1],
                                          dydx=knot_ydots[:, 1],
                                          extrapolate=False)
            solver.y_new = np.array([30., float(u_spline(solver.t_new))])
            solver.ydot_new = None

            if solver.DEBUG:
                self._plot_spike_estimate_cspline(solver, knot_ts, knot_ys,
                                                  v_spline)

            solver.set_event(event_idxs=[0], event_ts=[t_est])
        else:
            solver.reset_event()
示例#3
0
def test_roots_extrapolate_gh_11185():
    x = np.array([0.001, 0.002])
    y = np.array([1.66066935e-06, 1.10410807e-06])
    dy = np.array([-1.60061854, -1.600619])
    p = CubicHermiteSpline(x, y, dy)

    # roots(extrapolate=True) for a polynomial with a single interval
    # should return all three real roots
    r = p.roots(extrapolate=True)
    assert_equal(p.c.shape[1], 1)
    assert_equal(r.size, 3)
示例#4
0
    def generate_data(self, output=True):
        # 1 Генерация случайных данных
        # np.random.seed(1000)
        data_x = np.linspace(0, 1, 7, endpoint=True)
        data_y = np.concatenate([[0], np.random.rand(5), [1]])
        self.xxx = np.linspace(0, 1, 1000)
        self.cs = CubicHermiteSpline(data_x, data_y, np.zeros(7) + 1)
        self._maxfunc = np.max(self.cs(self.xxx))
        self.cs_norm = lambda x: self.cs(x)
        self.xxx = self.a * self.xxx
        # В UnrealEngine4 в см
        # Конусы

        self.xxc = np.linspace(self.start, self.end, self.count_cone)[0::]
        self.ycc = self._function(self.xxc)
        deriv = derivative(self._function, self.xxc)
        self.lcx = self.xxc  # + _koefx(self.s, self.xxc, deriv)
        self.lcy = self._function(
            self.xxc) + self.s / 2  # _coef_y(self.s, self.xxc, deriv)
        self.rcx = self.xxc  # - _koefx(self.s, self.xxc, deriv)
        self.rcy = self._function(
            self.xxc) - self.s / 2  # - _coef_y(self.s, self.xxc, deriv)
        self.is_generated_data = True
        if output:
            return np.array([[self.lcx, self.lcy], [self.rcx, self.rcy]
                             ]), np.array([self.xxc,
                                           self._function(self.xxc)])
示例#5
0
def weighted_average_slopes(data, old_start, old_dt, new_start, new_dt,
                            new_npts):  #, *args, **kwargs):
    # In almost all cases the unit will be in time.
    new_end = new_start + (new_npts - 1) * new_dt
    new_time_array = np.linspace(new_start, new_end, new_npts)

    m = np.diff(data) / old_dt
    w = np.abs(m)
    w = 1.0 / np.clip(w, np.spacing(1), w.max())

    slope = np.empty(len(data), dtype=np.float64)
    slope[0] = m[0]
    slope[1:-1] = (w[:-1] * m[:-1] + w[1:] * m[1:]) / (w[:-1] + w[1:])
    slope[-1] = m[-1]

    # If m_i and m_{i+1} have opposite signs then set the slope to zero.
    # This forces the curve to have extrema at the sample points and not
    # in-between.
    sign_change = np.diff(np.sign(m)).astype(np.bool)
    slope[1:-1][sign_change] = 0.0

    derivatives = np.empty((len(data), 2), dtype=np.float64)
    print(data[0:30])
    print(slope[0:30])
    derivatives[:, 0] = data
    derivatives[:, 1] = slope
    x = np.linspace(old_start, (len(x) - 1) * old_dt, len(x))
    interp = CubicHermiteSpline(x, data, derivatives)
示例#6
0
 def hermite_spline(self, **kwargs):
     from scipy.interpolate import CubicHermiteSpline
     times = self.x
     positions = [self(x) for x in times]
     derivative = self.derivative()
     velocities = [derivative(x) for x in times]
     return CubicHermiteSpline(times, positions, dydx=velocities, **kwargs)
示例#7
0
 def get_movement_velocities(self, actions, mode='minimalist', span=10):
     if mode == 'minimalist':
         ramp = 0.5 - 0.5 * np.cos(np.linspace(0, 2 * np.pi, span))
         velocities = actions * ramp[:, np.
                                     newaxis] * self._upper_velocity_limits[
                                         np.newaxis]
         velocities = velocities[np.newaxis]  # shape [1, span, 7]
     elif mode == "cubic_hermite":
         shape_factor = 0.2
         x = [0, 0.5, 1]
         actions_speeds = actions[:, :2 * self._n_joints]
         actions_speeds = actions_speeds.reshape((2, self._n_joints))
         actions_accelerations = actions[:, 2 * self._n_joints:]
         actions_accelerations = actions_accelerations.reshape(
             (2, self._n_joints))
         speeds = np.vstack([self._previous_hermite_speeds, actions_speeds])
         accelerations = np.vstack(
             [self._previous_hermite_accelerations, actions_accelerations])
         speeds[-1] *= shape_factor
         accelerations[-1] *= shape_factor
         eval = np.linspace(0, 1, span)
         poly = CubicHermiteSpline(x, speeds, accelerations)
         velocities = poly(eval) * self._upper_velocity_limits[np.newaxis]
         velocities = velocities[np.newaxis]  # shape [1, span, 7]
         self._previous_hermite_speeds = speeds[-1]
         self._previous_hermite_accelerations = accelerations[-1]
     elif mode == "full_raw":
         velocities = actions * self._upper_velocity_limits[np.newaxis]
         velocities = velocities[:, np.newaxis]  # shape [span, 1, 7]
     elif mode == "one_raw":
         velocities = actions * self._upper_velocity_limits[np.newaxis]
         velocities = velocities[np.newaxis]  # shape [1, 1, 7]
     else:
         raise ValueError("Unrecognized movement mode ({})".format(mode))
     return velocities
示例#8
0
def test_CubicHermiteSpline_correctness():
    x = [0, 2, 7]
    y = [-1, 2, 3]
    dydx = [0, 3, 7]
    s = CubicHermiteSpline(x, y, dydx)
    assert_allclose(s(x), y, rtol=1e-15)
    assert_allclose(s(x, 1), dydx, rtol=1e-15)
示例#9
0
文件: gtp.py 项目: tanwars/AA203-GoD
    def __init__(self, gate_poses):
        self.gates = gate_poses

        self.n_gates = np.size(gate_poses, 0)
        positions = np.array(
            [pose.position.to_numpy_array() for pose in gate_poses])
        dists = np.linalg.norm(positions[1:, :] - positions[:-1, :], axis=1)
        self.arc_length = np.zeros(shape=self.n_gates)
        self.arc_length[1:] = np.cumsum(dists)

        # tangents from quaternion
        # by rotating default gate direction with quaternion
        self.tangents = np.zeros(shape=(self.n_gates, 3))
        for i, pose in enumerate(gate_poses):
            self.tangents[i, :] = rotate_vector(
                pose.orientation, gate_facing_vector).to_numpy_array()
        self.track_spline = CubicHermiteSpline(self.arc_length,
                                               positions,
                                               self.tangents,
                                               axis=0)

        # gate width to track (half) width
        gate_widths = [gate_dimensions[0] / 2.0 for gate in gate_poses]
        gate_heights = [gate_dimensions[1] / 2.0 for gate in gate_poses]

        self.track_width_spline = CubicSpline(self.arc_length,
                                              gate_widths,
                                              axis=0)
        self.track_height_spline = CubicSpline(self.arc_length,
                                               gate_heights,
                                               axis=0)

        # sample 2048 points, the 2048 are arbitrary and should really be a parameter
        taus = np.linspace(self.arc_length[0], self.arc_length[-1], 2**12)

        self.track_centers = self.track_spline(taus)
        self.track_tangents = self.track_spline.derivative(nu=1)(taus)
        self.track_tangents /= np.linalg.norm(self.track_tangents,
                                              axis=1)[:, np.newaxis]
        self.track_normals = np.zeros_like(self.track_tangents)
        self.track_normals[:, 0] = -self.track_tangents[:, 1]
        self.track_normals[:, 1] = self.track_tangents[:, 0]
        self.track_normals /= np.linalg.norm(self.track_normals,
                                             axis=1)[:, np.newaxis]

        self.track_widths = self.track_width_spline(taus)
        self.track_heights = self.track_height_spline(taus)
示例#10
0
    def init_history_function(self):
        """ Initialization of the historical state according to the type of
        history given by the user as :
            1. function for simple evaluation
            2. tuple of (t_past, y_past, yp_past) for cubic Hermite
                interpolation with scipy.interpolate.CubicHermiteSpline
            3. constant
            4. previous integration
        Returns
        -------
        h : callable
            The history function as a callable. Depending of the h_info
            attribute, the function can be Hermite interpolation, ....

        """
        if (self.h_info == 'from tuple'):
            # unpack of time value, state and state's derivative
            (self.t_past, self.y_past, self.yp_past) = self.h
            self.t_oldest = self.t_past[0]
            if (self.t_oldest < (self.t0 - self.delayMax)):
                raise ("history tuple give in history not enough to describe\
                            all past values")
            self.y_oldest = self.y_past[:, 0]
            self.yp_oldest = self.yp_past[:, 0]
            # construction of the history attribute self.h with
            # CubicHermiteSpline
            self.h = []
            for k in range(self.n):
                # extrapolation not possible
                p = CubicHermiteSpline(self.t_past,
                                       self.y_past[k, :],
                                       self.yp_past[k, :],
                                       extrapolate=False)
                self.h.append(p)
        elif (self.h_info == 'from function'):
            self.t_oldest = self.t0 - self.delayMax
            self.t_past = [self.t_oldest, self.t0]
            self.y_oldest = self.h(self.t_oldest)
            self.yp_oldest = np.zeros(self.y_oldest.shape)
        elif (self.h_info == 'from constant'):
            self.t_oldest = self.t0 - self.delayMax
            self.y_oldest = self.h(self.t0)
            self.yp_oldest = self.h(self.t0) * 0.0
            self.t_past = [self.t_oldest, self.t0]
        elif (self.h_info == 'from DdeResult'):
            self.t_oldest = self.t0 - self.delayMax
            self.solver_old = self.h
            if self.solver_old.sol == None:
                if self.solver_old.CE_cyclic.t_min > self.t_oldest:
                    raise ValueError(
                        'Z_cyclic can not assess past values. Use dense output'
                    )
                self.h = self.solver_old.CE_cyclic
            else:
                self.h = self.solver_old.sol
        else:
            raise ValueError(
                "wrong initialization of the dde history, h_info = %s" %
                self.h_info)
示例#11
0
    def by_date(df):

        r_map = df.iloc[0, 1:].values
        r_map = [0] + r_map.tolist()

        chs = CubicHermiteSpline(t_map, r_map, [0] * len(r_map))
        ratemap = pd.DataFrame()
        ratemap['days_to_expiry'] = np.arange(0, 365 * 10 + 1).astype(int)
        ratemap['rate'] = chs(ratemap.days_to_expiry.values)

        return ratemap
示例#12
0
def _find_spike(knot_ts,
                knot_vs,
                thresh,
                knot_vdots=None,
                return_spline=False):
    """Find a spike for knot points."""
    if knot_vdots is not None:
        spline = CubicHermiteSpline(x=knot_ts,
                                    y=knot_vs - thresh,
                                    dydx=knot_vdots,
                                    extrapolate=False)
    else:
        spline = CubicSpline(x=knot_ts, y=knot_vs - thresh, extrapolate=False)

    roots = spline.roots()
    spike_time = roots[(roots >= knot_ts[0]) & (roots <= knot_ts[-1])][0]

    if not return_spline:
        return spike_time
    else:
        return spike_time, spline
示例#13
0
def test_complex():
    x = [1, 2, 3, 4]
    y = [1, 2, 1j, 3]

    for ip in [KroghInterpolator, BarycentricInterpolator, pchip, CubicSpline]:
        p = ip(x, y)
        assert_allclose(y, p(x))

    dydx = [0, -1j, 2, 3j]
    p = CubicHermiteSpline(x, y, dydx)
    assert_allclose(y, p(x))
    assert_allclose(dydx, p(x, 1))
示例#14
0
def Hermite(x, y, dydx):
    li = x[0] - 0.5
    ls = (x[len(x) - 1]) + 0.5
    cs = CubicHermiteSpline(x, y, dydx)
    xs = np.arange(li, ls, 0.1)
    fig, ax = plt.subplots(figsize=(6.5, 4))
    ax.plot(x, y, 'o', label='puntos')
    ax.plot(xs, cs(xs), label="Spline")
    ax.set_xlim(li, ls)

    ax.legend(loc='lower left', ncol=2)
    plt.savefig('hermite.jpg')
示例#15
0
def get_custom_pitch(length, keypoints):

    x = np.arange(1, keypoints.shape[0] + 1,
                  1)  # x coordinates of turning points
    xx = np.linspace(x.min(), x.max(), length)
    y = np.array(keypoints)  # y coordinates of turning points

    cspline = CubicHermiteSpline(x=x, y=y,
                                 dydx=np.zeros_like(y))  # interpolator
    pitch = torch.Tensor(cspline(xx)).unsqueeze(0)
    print(pitch.shape)
    print(pitch)
    return pitch
class SplinedTrack:
    """This class represents a Track defined by Gates.
    A spline is fitted through the Gates with tangential constraints.
    This spline is then sampled at 2048 points.
    """
    def __init__(self, gate_poses):
        self.gates = gate_poses

        self.n_gates = np.size(gate_poses, 0)
        positions = np.array([pose.position.to_numpy_array() for pose in gate_poses])
        dists = np.linalg.norm(positions[1:, :] - positions[:-1, :], axis=1)
        self.arc_length = np.zeros(shape=self.n_gates)
        self.arc_length[1:] = np.cumsum(dists)

        # tangents from quaternion
        # by rotating default gate direction with quaternion
        self.tangents = np.zeros(shape=(self.n_gates, 3))
        for i, pose in enumerate(gate_poses):
            self.tangents[i, :] = rotate_vector(pose.orientation, gate_facing_vector).to_numpy_array()
        self.track_spline = CubicHermiteSpline(self.arc_length, positions, self.tangents, axis=0)

        # gate width to track (half) width
        gate_widths = [gate_dimensions[0] / 2.0 for gate in gate_poses]
        gate_heights = [gate_dimensions[1] / 2.0 for gate in gate_poses]

        self.track_width_spline = CubicSpline(self.arc_length, gate_widths, axis=0)
        self.track_height_spline = CubicSpline(self.arc_length, gate_heights, axis=0)

        # sample 2048 points, the 2048 are arbitrary and should really be a parameter
        taus = np.linspace(self.arc_length[0], self.arc_length[-1], 2**12)

        self.track_centers = self.track_spline(taus)
        self.track_tangents = self.track_spline.derivative(nu=1)(taus)
        self.track_tangents /= np.linalg.norm(self.track_tangents, axis=1)[:, np.newaxis]
        self.track_normals = np.zeros_like(self.track_tangents)
        self.track_normals[:, 0] = -self.track_tangents[:, 1]
        self.track_normals[:, 1] = self.track_tangents[:, 0]
        self.track_normals /= np.linalg.norm(self.track_normals, axis=1)[:, np.newaxis]

        self.track_widths = self.track_width_spline(taus)
        self.track_heights = self.track_height_spline(taus)

    def track_frame_at(self, p):
        """Find closest track frame to a reference point p.
        :param p: Point of reference
        :return: Index of track frame, track center, tangent and normal.
        """
        i = np.linalg.norm(self.track_centers - p, axis=1).argmin()
        return i, self.track_centers[i], self.track_tangents[i], self.track_normals[i], \
               self.track_widths[i], self.track_heights[i]
示例#17
0
    def by_date(df):

        t_map = [
            0, 30, 60, 90, 180, 12 * 30, 24 * 30, 36 * 30, 60 * 30, 72 * 30,
            120 * 30, 240 * 30, 360 * 30
        ]
        t_map = np.array(t_map)

        r_map = df.iloc[-1, 1:].values
        r_map = np.array([0] + r_map.tolist())

        chs = CubicHermiteSpline(t_map, r_map, [0] * len(t_map))

        rm_df = pd.DataFrame()
        rm_df['days_to_expiry'] = np.arange(0, 365 * 10 + 1).astype(int)
        rm_df['rate'] = chs(rm_df.days_to_expiry.values)

        return rm_df
def mpc(x0,
        v0,
        curve,
        dt_max=0.5,
        max_time=INF,
        max_iterations=INF,
        v_max=None,
        **kwargs):
    assert (max_time < INF) or (max_iterations < INF)
    from scipy.interpolate import CubicHermiteSpline
    start_time = time.time()
    best_cost, best_spline = INF, None
    for iteration in irange(max_iterations):
        if elapsed_time(start_time) >= max_time:
            break
        t1 = random.uniform(curve.x[0], curve.x[-1])
        future = (curve.x[-1] - t1)  # TODO: weighted
        if future >= best_cost:
            continue
        x1 = curve(t1)
        if (v_max is not None) and (max((x1 - x0) / v_max) > dt_max):
            continue
        # if quickest_inf_accel(x0, x1, v_max=v_max) > dt_max:
        #     continue
        v1 = curve(t1, nu=1)
        #dt = dt_max
        dt = random.uniform(0, dt_max)
        times = [0., dt]
        positions = [x0, x1]
        velocities = [v0, v1]
        spline = CubicHermiteSpline(times, positions, dydx=velocities)
        if not check_spline(spline, **kwargs):
            continue
        # TODO: optimize to find the closest on the path within a range

        cost = future + (spline.x[-1] - spline.x[0])
        if cost < best_cost:
            best_cost, best_spline = cost, spline
            print('Iteration: {} | Cost: {:.3f} | T: {:.3f} | Time: {:.3f}'.
                  format(iteration, cost, t1, elapsed_time(start_time)))
            print(best_cost, t1, elapsed_time(start_time))
    return best_cost, best_spline
示例#19
0
文件: job.py 项目: zQuantz/OscraP
def collect():

	logger.info(f"Downloading Table: {URL}")
	df = pd.read_html(URL, attrs=attrs)
	logger.info(f"Number of tables found: {len(df)}")

	if len(df) != 1:
		return

	df = df[0]
	df.columns = t_names

	df['date_current'] = pd.to_datetime(df.date_current)
	df = df.sort_values('date_current', ascending=False)
	df = df.reset_index(drop=True)

	###############################################################################################

	df = df[df.date_current == DATE]
	logger.info(f"Number of items after filter: {len(df)}")

	if len(df) == 0:
		raise Exception("Data not up to date.")

	_connector.write("treasuryrates", df)
	df.to_csv(f"{DATA}.csv", index=False)

	###############################################################################################

	r_map = df.iloc[-1, 1:].values
	r_map = np.array([0] + r_map.tolist())
	chs = CubicHermiteSpline(t_map, r_map, [0]*len(t_map))

	rm_df = pd.DataFrame()
	rm_df['days_to_expiry'] = np.arange(0, 365 * 10 + 1).astype(int)
	rm_df['rate'] = chs(rm_df.days_to_expiry.values)
	rm_df['date_current'] = DATE

	_connector.write("treasuryratemap", rm_df)

	return df
示例#20
0
def trim_start(poly, start):
    from scipy.interpolate import PPoly, CubicHermiteSpline  #, BPoly
    #PPoly.from_bernstein_basis
    #BPoly.from_derivatives
    times = poly.x
    if start <= times[0]:
        return poly
    if start >= times[-1]:
        return None

    first = find(lambda i: times[i] >= start, range(len(times)))
    ts = [start, times[first]]  # + start) / 2.]
    ps = [poly(t) for t in ts]
    derivative = poly.derivative()
    vs = [derivative(t) for t in ts]
    correction = CubicHermiteSpline(ts, ps, dydx=vs)

    times = [start] + list(times[first:])
    c = poly.c[:, first - 1:, ...]
    c[:, 0, ...] = correction.c[-poly.c.shape[0]:, 0,
                                ...]  # TODO: assert that the rest are zero
    poly = PPoly(c=c, x=times)
    return poly
 def generateMinutelyValuesFor(self, day):
     startVal = self.dailyValues[day]
     endVal = self.dailyValues[day + 1]
     xToFit = []
     yToFit = []
     numPoints = random.randint(3, 7)
     xToFit.append(0)
     yToFit.append(startVal)
     xToFit.append(509)
     yToFit.append(endVal)
     for i in range(numPoints - 2):
         xToFit.append(random.uniform(1, 508))
         yToFit.append(
             random.uniform(startVal + (startVal - endVal),
                            endVal - (startVal - endVal)))
     zipped = zip(xToFit, yToFit)
     zipped = sorted(zipped)
     xToFit, yToFit = zip(*zipped)
     fit = CubicHermiteSpline(x=xToFit, y=yToFit, dydx=np.zeros(numPoints))
     self.minutelyValues = fit(minute_list)
     for i in range(self.minutelyValues.size):
         self.minutelyValues[i] = self.minutelyValues[i] * random.gauss(
             1, 0.0002)
示例#22
0
def _fast_numerical_inverse(dist, tol=1e-12, max_intervals=100000):
    """
    Generate fast, approximate PPF (inverse CDF) of probability distribution.

    `_fast_numerical_inverse` accepts `dist`, an object representing the
    distribution for which a fast approximate PPF is desired, and returns an
    object `fni` with methods that approximate `dist.ppf` and `dist.rvs`.
    For some distributions, these methods may be faster than those of `dist`
    itself.

    Parameters
    ----------
    dist : object
        Object representing distribution for which fast approximate PPF is
        desired; e.g., a frozen instance of `scipy.stats.rv_continuous`.
    tol : float, optional
        u-error tolerance. The default is 1e-12.
    max_intervals : int, optional
        Maximum number of intervals in the cubic Hermite Spline used to
        approximate the percent point function. The default is 100000.

    Returns
    -------
    H : scipy.interpolate.CubicHermiteSpline
        Interpolant of the distributions's PPF.
    intervals : int
        The number of intervals of the interpolant.
    midpoint_error : float
        The maximum u-error at an interpolant interval midpoint.
    a, b : float
        The left and right endpoints of the valid domain of the interpolant.

    """
    dist, tol, max_intervals = _fni_input_validation(dist, tol, max_intervals)

    # [1] Section 2.1: "For distributions with unbounded domain, we have to
    # chop off its tails at [a] and [b] such that F(a) and 1-F(b) are small
    # compared to the maximal tolerated approximation error."
    p = np.array([dist.ppf(tol/10), dist.isf(tol/10)])  # initial interval

    # [1] Section 2.3: "We then halve this interval recursively until
    # |u[i+1]-u[i]| is smaller than some threshold value, for example, 0.05."
    u = dist.cdf(p)
    while p.size-1 <= np.ceil(max_intervals/2):
        i = np.nonzero(np.diff(u) > 0.05)[0]
        if not i.size:
            break

        p_mid = (p[i] + p[i+1])/2
        # Compute only the new values and insert them in the right places
        # [1] uses a linked list; we can't do that efficiently
        u_mid = dist.cdf(p_mid)
        p = np.concatenate((p, p_mid))
        u = np.concatenate((u, u_mid))
        i_sort = np.argsort(p)
        p = p[i_sort]
        u = u[i_sort]

    # [1] Section 2.3: "Now we continue with checking the error estimate in
    # each of the intervals and continue with splitting them until [it] is
    # smaller than a given error bound."
    u = dist.cdf(p)
    f = dist.pdf(p)
    while p.size-1 <= max_intervals:
        # [1] Equation 4-8
        try:
            H = CubicHermiteSpline(u, p, 1/f)
        except ValueError:
            message = ("The interpolating spline could not be created. This "
                       "is often caused by inaccurate CDF evaluation in a "
                       "tail of the distribution. Increasing `tol` can "
                       "resolve this error at the expense of lower accuracy.")
            raise ValueError(message)
        # To improve performance, add update feature to CubicHermiteSpline

        # [1] Equation 12
        u_mid = (u[:-1] + u[1:])/2
        eu = np.abs(dist.cdf(H(u_mid)) - u_mid)

        i = np.nonzero(eu > tol)[0]
        if not i.size:
            break

        p_mid = (p[i] + p[i+1])/2
        u_mid = dist.cdf(p_mid)
        f_mid = dist.pdf(p_mid)
        p = np.concatenate((p, p_mid))
        u = np.concatenate((u, u_mid))
        f = np.concatenate((f, f_mid))
        i_sort = np.argsort(p)
        p = p[i_sort]
        u = u[i_sort]
        f = f[i_sort]

    # todo: add test for monotonicity [1] Section 2.4
    # todo: deal with vanishing density [1] Section 2.5
    return H, eu, p.size-1, u[0], u[-1]
示例#23
0
def plot_resolution(Rp,
                    dY,
                    Np,
                    dist='blend',
                    cf=0.0,
                    ntor=None,
                    fig=None,
                    ax=None):
    try:
        sns.set_style('white')
        sns.set_palette('colorblind')
    except NameError:
        pass

    if (fig is None) and (ax is None):
        fig, ax = plt.subplots()

    th = np.linspace(-np.pi, np.pi, 100001)
    # plot location of uniformly spaced planes
    ps = np.linspace(-np.pi, np.pi, Np + 1)
    ymin = [-1, 0][dist != 'fourier']
    for p in ps:
        ax.plot([p, p], [ymin, 1], 'k--', lw=1)
    ax.plot([-np.pi, np.pi], [0, 0], 'k', lw=1)

    # plot the von Mises distribution through the center of the pellet
    if dist == 'vonmises':
        f = np.exp(-(Rp / dY)**2 * (1. - np.cos(th)))
        dfdt = -(Rp / dY)**2 * np.sin(th) * f
    elif dist == 'cauchy':
        gamma = dY / Rp
        f = (np.cosh(gamma) - 1.) / (np.cosh(gamma) - np.cos(th))
        dfdt = -(np.cosh(gamma) - 1.) * np.sin(th) / (np.cosh(gamma) -
                                                      np.cos(th))**2
    elif dist == 'blend':
        fv = np.exp(-(Rp / dY)**2 * (1. - np.cos(th)))
        sv = np.trapz(fv, th)
        fv /= sv
        dfvdt = -(Rp / dY)**2 * np.sin(th) * fv
        gamma = dY / Rp
        fc = (np.cosh(gamma) - 1.) / (np.cosh(gamma) - np.cos(th))
        sc = np.trapz(fc, th)
        fc /= sc
        dfcdt = -fc * np.sin(th) / (np.cosh(gamma) - np.cos(th))

        f = (1. - cf) * fv + cf * fc
        sf = np.trapz(f, th)
        f /= sf
        dfdt = ((1. - cf) * dfvdt + cf * dfcdt) / sf
    elif dist == 'fourier':
        f = np.cos(ntor * th)
        dfdt = -ntor * np.sin(ntor * th)

    ax.plot(th, f, lw=3)

    # plot Cubic Hermite interpolation using plane locations
    fp = interp1d(th, f)(ps)
    dfpdt = interp1d(th, dfdt)(ps)
    fi = CubicHermiteSpline(ps, fp, dfpdt)(th)

    if dist != 'fourier' and np.any(fi < 0):
        print("Warning: interpolated pellet distribution goes negative: %.2e" %
              fi.min())

    ax.plot(th, fi, lw=3)

    ax.set_xlim([-np.pi, np.pi])
    ax.set_xticks([-np.pi, -np.pi / 2, 0., np.pi / 2, np.pi])
    ax.set_xticklabels(
        [r'$-\pi$', r'$-\frac{\pi}{2}$', '0', r'$\frac{\pi}{2}$', r'$-\pi$'])
    fig.tight_layout()
    plt.show()

    return (fig, ax)
示例#24
0
    def getCoeffsForParamPoly(x1,
                              y1,
                              h1,
                              x2,
                              y2,
                              h2,
                              cp1,
                              cp2,
                              vShiftForSamePoint=0):
        """ Assumes traffice goes from point1 to point2. By default if the contact point is start, traffic is going into the road, and end, traffic is going out. """

        if cp1 == pyodrx.ContactPoint.start:
            h1 = h1 + np.pi

        if cp2 == pyodrx.ContactPoint.end:
            h2 = h2 + np.pi

        h1 = h1 % (np.pi * 2)
        h2 = h2 % (np.pi * 2)

        # TODO we need to solve the problem with param poly, not a straight road, as there can still be some angles near threshold for which it can fail.

        # if Geometry.headingsTooClose(h1, h2):
        #     # return a straight road. This is flawed because heading is assumed to be 0 for straight roads in pyodrx
        #     return self.getStraightRoadBetween(newRoadId, road1, road2, incomingCp, ioutgoingCp,
        #                             isJunction=isJunction,
        #                             n_lanes=n_lanes,
        #                             lane_offset=lane_offset,
        #                             laneSides=laneSides)
        # TODO return a curve because points can have the same heading, but big translation which creates problem.

        tangentMagnitude = math.sqrt((x1 - x2)**2 + (y1 - y2)**2)

        if tangentMagnitude < 3:  # it too short, for U-turns
            tangentMagnitude = 3

        localRotation = h1  # rotation of local frame wrt inertial frame.

        u1 = 0
        v1 = 0

        u2, v2 = Geometry.inertialToLocal((x1, y1), localRotation, (x2, y2))

        if u1 == u2 and v1 == v2:
            v1 -= vShiftForSamePoint
            v2 += vShiftForSamePoint

        localStartTangent = Geometry.headingToTangent(0, tangentMagnitude)
        localEndHeading = Geometry.getRelativeHeading(h1, h2)
        localEndTangent = Geometry.headingToTangent(localEndHeading,
                                                    tangentMagnitude)

        X = [u1, u2]
        Y = [v1, v2]

        tangentX = [localStartTangent[0], localEndTangent[0]]
        tangentY = [localStartTangent[1], localEndTangent[1]]

        # print(f"connecting road #{road1.id} and # {road2.id}: {x1, y1, x2, y2}")
        # print(f"connecting road #{road1.id} and # {road2.id}: X, Y, tangentX, tangentY")
        # print(X)
        # print(Y)
        # print(tangentX)
        # print(tangentY)

        p = [0, 1]

        hermiteX = CubicHermiteSpline(p, X, tangentX)
        hermiteY = CubicHermiteSpline(p, Y, tangentY)

        xCoeffs = hermiteX.c.flatten()
        yCoeffs = hermiteY.c.flatten()
        return xCoeffs, yCoeffs
示例#25
0
import numpy as np
from scipy import optimize
from scipy.special import expit
from scipy.linalg import norm
from scipy.interpolate import interp1d, CubicHermiteSpline
import matplotlib.pyplot as plt

from fitts_law import calc_IP, calc_hit_prob

P_THRESHOLD = 0.02

TP_MIN = 0.1
TP_MAX = 100

correction0_moving_spline = CubicHermiteSpline(
    np.array([-1, -0.6, 0.3, 0.5, 1]), np.array([0.6, 1, 1, 0.6, 0]),
    np.array([0.8, 0.8, -0.8, -2, -0.8]))

# Data for correction calculation
# Refer to https://www.wolframcloud.com/obj/hebuweitom/Published/Correction.nb
# for the effects of the data in graphs
# obj0 - flow
a0f = [0, 1, 1.5, 2]
k0f = interp1d(a0f, [-14, -7.7, -7, -4.4],
               bounds_error=False,
               fill_value=(-14, -4.4),
               assume_sorted=True)

coeffs0f = np.array([[[0, 0, 1, 6], [0, 0, 1, 3], [0, 0, 1, 3]],
                     [[-1, 0, 1, 2.5], [-0.5, 1, 1, 1.2], [-0.5, -1, 1, 1.2]],
                     [[-1.5, 0, 1, 1.5], [-0.75, 1.5, 1, 1],
示例#26
0
def interp_sigma():

    #beam emittance
    eps_x = 20e-9  # m
    eps_y = 1.3e-9  # m

    df = load_esr()

    #range with pressure data
    df = df.query("s>-15 and s<10")

    interp_x = CubicHermiteSpline(df["s"], df["beta_x"], -2 * df["alpha_x"])
    interp_y = CubicHermiteSpline(df["s"], df["beta_y"], -2 * df["alpha_y"])

    xs = np.linspace(df["s"][df["s"].index[0]], df["s"][df["s"].index[-1]],
                     300)

    print("range:", xs[0], xs[-1])

    #plt.style.use("dark_background")
    #col = "lime"
    col = "black"

    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    set_axes_color(ax, col)
    set_grid(plt, col)

    #plot data
    sigma_x = []
    sigma_y = []
    for i in xs:
        sigma_x.append(get_beam_sigma(eps_x, interp_x(i)))
        sigma_y.append(get_beam_sigma(eps_y, interp_y(i)))

    #plot in detector coordinates
    plt.plot(-1 * df["s"],
             get_beam_sigma(eps_x, df["beta_x"]),
             "o",
             markersize=4,
             color="blue",
             lw=1)
    plt.plot(-1 * xs, sigma_x, "-", color="blue", lw=1)

    plt.plot(-1 * df["s"],
             get_beam_sigma(eps_y, df["beta_y"]),
             "o",
             markersize=4,
             color="red",
             lw=1)
    plt.plot(-1 * xs, sigma_y, "-", color="red", lw=1)

    leg = legend()
    leg.add_entry(leg_txt(), "$E_e$ = 10 GeV")
    leg.add_entry(leg_lin("blue"), "$\sigma_x$")
    leg.add_entry(leg_lin("red"), "$\sigma_y$")
    leg.draw(plt, col)

    ax.set_xlabel("$z$ (m)")
    ax.set_ylabel("Beam $\sigma$ (mm)")

    fig.savefig("01fig.pdf", bbox_inches="tight")
    plt.close()
示例#27
0
def tvlqr(x, u, dt, func, jax_f):
    # interpolation of x
    t = [0.]
    # obtain the time step for each knot
    for i in range(len(dt)):
        t.append(t[-1] + dt[i])
    xdot = []
    for i in range(len(x)-1):
        xdot.append(func(x[i], u[i]))
    xdot.append(func(x[-1], u[-1]))
    # obtain the interpolation for x
    xtraj = CubicHermiteSpline(x=t, y=x, dydx=xdot, extrapolate=True)


    # interp1d zero-th order interpolation will throw away the last signal
    utraj = []
    for i in range(len(u)):
        utraj.append(u[i])
    utraj.append(np.zeros(u[-1].shape))
    utraj = interp1d(x=t, y=utraj, kind='zero', axis=0, fill_value='extrapolate')
    # local linearization
    def jaxfunc(x, u):
        return jax.numpy.asarray(jax_f(x, u))
    # then to compute the jacobian at x, just call jax.jacfwd(jaxfunc, argnum=0)(x, u)
    # for jacobian at u, call the same function with argnum=1
    # write down the differential Ricardii equation
    def ricartti_f(t, S_):
        # obtain A and B
        A = jax.jacfwd(jaxfunc, argnums=0)(xtraj(t), utraj(t))
        B = jax.jacfwd(jaxfunc, argnums=1)(xtraj(t), utraj(t))
        #I = np.identity(len(x[0]))
        Q = 1*np.identity(len(x[0]))
        S_ = S_.reshape(Q.shape)
        res = -(Q - S_ @ B @ B.T @ S_ + S_ @ A + A.T @ S_)
        res = res.flatten()
        return res
    S_0 = 1*np.identity(len(x[0])).flatten()
    t_0 = t[-1]
    """
    # Here is one way to do it
    r = ode(ricardii_f).set_integrator('vode', method='adams', with_jacobian=False)
    r.set_initial_value(S_0, t_0)
    for i in range(len(dt)-1, -1, -1):
        print('going to integrate to time:')
        print(r.t-dt[i])
        if r.t-dt[i] < 0:
            integrate_t = 0.
        else:
            integrate_t = r.t-dt[i]
        r.integrate(integrate_t)
        print('after integration:')
        print("time:")
        print(r.t)
        print('y:')
        print(r.y)
    """
    """
    # another way
    time_span = []
    for i in range(len(t)):
        time_span.append(t[len(t)-1-i])
    sol = odeint(ricardii_f, S_0, time_span)
    sol = [s.reshape((len(x[0]), len(x[0]))) for s in sol]
    S = interp1d(time_span, sol, kind='cubic', axis=0)
    """
    # use solve_ivp
    sol = solve_ivp(fun=ricartti_f, t_span=[t[-1],0.], y0=S_0, dense_output=True)
    S = sol.sol
    print(S(t[-1]))
    def controller(t, x):
        #print('tracking time: %f' % (t))
        #print('current state:')
        #print(x)
        #print('tracking state:')
        #print(xtraj(t))
        #print('tracking action:')
        #print(utraj(t))
        B = jax.jacfwd(jaxfunc, argnums=1)(xtraj(t), utraj(t))
        K = B.T @ S(t).reshape((len(x),len(x)))
        #print(S(t).reshape(len(x),len(x)))
        u = -K @ (x - xtraj(t)) + utraj(t)
        #print('result control:')
        #print(u)
        return u
    return controller, xtraj, utraj, S
示例#28
0
文件: smooth.py 项目: ajy8456/POMDP
def smooth_curve(start_curve,
                 v_max,
                 a_max,
                 curve_collision_fn,
                 sample=True,
                 intermediate=True,
                 cubic=True,
                 refit=True,
                 num=1000,
                 min_improve=0.,
                 max_time=INF):
    # TODO: rename smoothing.py to shortcutting.py
    # TODO: default v_max and a_max
    assert (num < INF) or (max_time < INF)
    assert refit or intermediate
    # TODO: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html
    #from scipy.interpolate import UnivariateSpline, LSQUnivariateSpline, LSQBivariateSpline
    from scipy.interpolate import CubicHermiteSpline
    start_time = time.time()

    if curve_collision_fn(start_curve, t0=None, t1=None):
        #return None
        return start_curve
    curve = start_curve
    for iteration in irange(num):
        if elapsed_time(start_time) >= max_time:
            break
        times = curve.x
        durations = [0.] + [t2 - t1
                            for t1, t2 in get_pairs(times)]  # includes start
        positions = [curve(t) for t in times]
        velocities = [curve(t, nu=1) for t in times]

        # ts = [times[0], times[-1]]
        # t1, t2 = curve.x[0], curve.x[-1]
        t1, t2 = np.random.uniform(times[0], times[-1],
                                   2)  # TODO: sample based on position
        if t1 > t2:  # TODO: minimum distance from a knot
            t1, t2 = t2, t1

        ts = [t1, t2]
        i1 = find(lambda i: times[i] <= t1,
                  reversed(range(len(times))))  # index before t1
        i2 = find(lambda i: times[i] >= t2,
                  range(len(times)))  # index after t2
        assert i1 != i2

        local_positions = [curve(t) for t in ts]
        local_velocities = [curve(t, nu=1) for t in ts]
        #print(local_velocities, v_max)
        assert all(
            np.less_equal(np.absolute(v), v_max + EPSILON).all()
            for v in local_velocities)
        #if any(np.greater(np.absolute(v), v_max).any() for v in local_velocities):
        #    continue # TODO: do the same with collisions
        x1, x2 = local_positions
        v1, v2 = local_velocities

        #min_t = 0
        min_t = find_lower_bound(x1, x2, v1, v2, v_max=v_max, a_max=a_max)
        #min_t = optimistic_time(x1, x2, v_max=v_max, a_max=a_max)
        current_t = (t2 - t1) - min_improve
        if min_t >= current_t:  # TODO: also limit the distance/duration between these two points
            continue

        #best_t = min_t
        if sample:
            max_t = current_t
            ramp_t = solve_multivariate_ramp(x1, x2, v1, v2, v_max, a_max)
            ramp_t = INF if ramp_t is None else ramp_t
            max_t = min(max_t, ramp_t)
            best_t = random.uniform(min_t, max_t)
        else:
            best_t = solve_multivariate_ramp(x1, x2, v1, v2, v_max, a_max)
        if (best_t is None) or (best_t >= current_t):
            continue
        #best_t += 1e-3
        #print(min_t, best_t, current_t)
        local_durations = [t1 - times[i1], best_t, times[i2] - t2]
        #local_times = [0, best_t]
        local_times = [t1, (t1 + best_t)
                       ]  # Good if the collision function is time sensitive

        if intermediate:
            if cubic:
                local_curve = CubicHermiteSpline(local_times,
                                                 local_positions,
                                                 dydx=local_velocities)
            else:
                local_curve = solve_multi_poly(times=local_times,
                                               positions=local_positions,
                                               velocities=local_velocities,
                                               v_max=v_max,
                                               a_max=a_max)
            if (local_curve is None) or (spline_duration(local_curve) >= current_t) \
                    or curve_collision_fn(local_curve, t0=None, t1=None):
                continue
            # print(new_curve.hermite_spline().c[0,...])
            local_positions = [local_curve(x) for x in local_curve.x]
            local_velocities = [local_curve(x, nu=1) for x in local_curve.x]
            local_durations = [t1 - times[i1]] + [
                x - local_curve.x[0] for x in local_curve.x[1:]
            ] + [times[i2] - t2]

        if refit:
            new_durations = np.concatenate(
                [durations[:i1 + 1], local_durations, durations[i2 + 1:]])
            # assert len(new_durations) == (i1 + 1) + (len(durations) - i2) + 2
            new_times = np.cumsum(new_durations)
            # new_times = [new_times[0]] + [t2 for t1, t2 in get_pairs(new_times) if t2 > t1]
            new_positions = positions[:i1 +
                                      1] + local_positions + positions[i2:]
            new_velocities = velocities[:i1 +
                                        1] + local_velocities + velocities[i2:]
            # if not all(np.less_equal(np.absolute(v), v_max).all() for v in new_velocities):
            #    continue
            if cubic:
                # new_curve = CubicSpline(new_times, new_positions)
                new_curve = CubicHermiteSpline(new_times,
                                               new_positions,
                                               dydx=new_velocities)
            else:
                new_curve = solve_multi_poly(new_times, new_positions,
                                             new_velocities, v_max, a_max)
            if (new_curve is None) or (spline_duration(new_curve) >= spline_duration(curve)) \
                    or not check_spline(new_curve, v_max, a_max) or \
                    (not intermediate and curve_collision_fn(new_curve, t0=None, t1=None)):
                continue
        else:
            assert intermediate
            # print(curve.x)
            # print(curve.c[...,0])
            # pre_curve = trim(curve, end=t1)
            # post_curve = trim(curve, start=t1)
            # curve = append_polys(pre_curve, post_curve)
            # print(curve.x)
            # print(curve.c[...,0])

            # print(new_curve.x)
            # print(new_curve.c[...,0])
            pre_curve = trim(curve, end=t1)
            post_curve = trim(curve, start=t2)
            new_curve = append_polys(
                pre_curve, local_curve,
                post_curve)  # TODO: the numerics are throwing this off?
            # print(new_curve.x)
            # print(new_curve.c[...,0])
            #assert(not curve_collision_fn(new_curve, t0=None, t1=None))
            if (spline_duration(new_curve) >= spline_duration(curve)) or \
                    not check_spline(new_curve, v_max, a_max):
                continue
        print(
            'Iterations: {} | Current time: {:.3f} | New time: {:.3f} | Elapsed time: {:.3f}'
            .format(iteration, spline_duration(curve),
                    spline_duration(new_curve), elapsed_time(start_time)))
        curve = new_curve
    print(
        'Iterations: {} | Start time: {:.3f} | End time: {:.3f} | Elapsed time: {:.3f}'
        .format(num, spline_duration(start_curve), spline_duration(curve),
                elapsed_time(start_time)))
    check_spline(curve, v_max, a_max)
    return curve
示例#29
0
文件: smooth.py 项目: ajy8456/POMDP
def smooth_cubic(path,
                 collision_fn,
                 resolutions,
                 v_max=None,
                 a_max=None,
                 time_step=1e-2,
                 parabolic=True,
                 sample=False,
                 intermediate=True,
                 max_iterations=1000,
                 max_time=INF,
                 min_improve=0.,
                 verbose=False):
    start_time = time.time()
    if path is None:
        return None
    assert (v_max is not None) or (a_max is not None)
    assert path and (max_iterations < INF) or (max_time < INF)
    from scipy.interpolate import CubicHermiteSpline

    def curve_collision_fn(segment, t0=None, t1=None):
        #if not within_dynamical_limits(curve, max_v=v_max, max_a=a_max, start_t=t0, end_t=t1):
        #    return True
        _, samples = sample_discretize_curve(segment,
                                             resolutions,
                                             start_t=t0,
                                             end_t=t1,
                                             time_step=time_step)
        if any(map(collision_fn, default_selector(samples))):
            return True
        return False

    start_positions = waypoints_from_path(
        path
    )  # TODO: ensure following the same path (keep intermediate if need be)
    if len(start_positions) == 1:
        start_positions.append(start_positions[-1])

    start_durations = [0] + [
        solve_linear(
            np.subtract(p2, p1), v_max, a_max, t_min=T_MIN, only_duration=True)
        for p1, p2 in get_pairs(start_positions)
    ]  # TODO: does not assume continuous acceleration
    start_times = np.cumsum(start_durations)  # TODO: dilate times
    start_velocities = [
        np.zeros(len(start_positions[0])) for _ in range(len(start_positions))
    ]
    start_curve = CubicHermiteSpline(start_times,
                                     start_positions,
                                     dydx=start_velocities)
    # TODO: directly optimize for shortest spline
    if len(start_positions) <= 2:
        return start_curve

    curve = start_curve
    for iteration in irange(max_iterations):
        if elapsed_time(start_time) >= max_time:
            break
        times = curve.x
        durations = [0.] + [t2 - t1 for t1, t2 in get_pairs(times)]
        positions = [curve(t) for t in times]
        velocities = [curve(t, nu=1) for t in times]

        t1, t2 = np.random.uniform(times[0], times[-1], 2)
        if t1 > t2:
            t1, t2 = t2, t1
        ts = [t1, t2]
        i1 = find(lambda i: times[i] <= t1,
                  reversed(range(len(times))))  # index before t1
        i2 = find(lambda i: times[i] >= t2,
                  range(len(times)))  # index after t2
        assert i1 != i2

        local_positions = [curve(t) for t in ts]
        local_velocities = [curve(t, nu=1) for t in ts]
        if not all(
                np.less_equal(np.absolute(v),
                              np.array(v_max) + EPSILON).all()
                for v in local_velocities):
            continue

        x1, x2 = local_positions
        v1, v2 = local_velocities

        current_t = (t2 - t1) - min_improve  # TODO: percent improve
        #min_t = 0
        min_t = find_lower_bound(x1, x2, v1, v2, v_max=v_max, a_max=a_max)
        if parabolic:
            # Softly applies limits
            min_t = solve_multivariate_ramp(
                x1, x2, v1, v2, v_max,
                a_max)  # TODO: might not be feasible (soft constraint)
            if min_t is None:
                continue
        if min_t >= current_t:
            continue
        best_t = random.uniform(min_t, current_t) if sample else min_t

        local_durations = [t1 - times[i1], best_t, times[i2] - t2]
        #local_times = [0, best_t]
        local_times = [t1, (t1 + best_t)
                       ]  # Good if the collision function is time varying

        if intermediate:
            local_curve = CubicHermiteSpline(local_times,
                                             local_positions,
                                             dydx=local_velocities)
            if curve_collision_fn(local_curve, t0=None,
                                  t1=None):  # check_spline
                continue
            #local_positions = [local_curve(x) for x in local_curve.x]
            #local_velocities = [local_curve(x, nu=1) for x in local_curve.x]
            local_durations = [t1 - times[i1]] + [
                x - local_curve.x[0] for x in local_curve.x[1:]
            ] + [times[i2] - t2]

        new_durations = np.concatenate(
            [durations[:i1 + 1], local_durations, durations[i2 + 1:]])
        new_times = np.cumsum(new_durations)
        new_positions = positions[:i1 + 1] + local_positions + positions[i2:]
        new_velocities = velocities[:i1 +
                                    1] + local_velocities + velocities[i2:]

        new_curve = CubicHermiteSpline(new_times,
                                       new_positions,
                                       dydx=new_velocities)
        if not intermediate and curve_collision_fn(new_curve, t0=None,
                                                   t1=None):
            continue
        if verbose:
            print(
                'Iterations: {} | Current time: {:.3f} | New time: {:.3f} | Elapsed time: {:.3f}'
                .format(iteration, spline_duration(curve),
                        spline_duration(new_curve), elapsed_time(start_time)))
        curve = new_curve
    if verbose:
        print(
            'Iterations: {} | Start time: {:.3f} | End time: {:.3f} | Elapsed time: {:.3f}'
            .format(max_iterations, spline_duration(start_curve),
                    spline_duration(curve), elapsed_time(start_time)))
    return curve
示例#30
0
# julia 
path_ju = 'data_julia'
t_ju = np.load('%s/solMackeyGlassBS3_t.npz' % path_ju)
y_ju = np.load('%s/solMackeyGlassBS3_u.npz' % path_ju)[:,0]

# sol matlab
import scipy.io as spio
path_matlab = 'data_dde23/mackeyGlass_dde23.mat'
mat = spio.loadmat(path_matlab, squeeze_me=True)

t_mat = mat['t']
y_mat = mat['y']
yp_mat = mat['yp']

p_dev = CubicHermiteSpline(t,y,yp)
y_dev_ju = p_dev(t_ju)
p_mat = CubicHermiteSpline(t_mat,y_mat,yp_mat)
y_mat_ju = p_mat(t_ju)

idx = np.searchsorted(t_mat,t_j[0]) - 1
p_mat_jit = CubicHermiteSpline(t_mat[idx:],y_mat[idx:],yp_mat[idx:])
y_mat_jit = p_mat_jit(t_j)


err_mat_ju = np.abs(y_mat_ju - y_ju)/y_ju
err_mat_jit = np.abs(y_mat_jit - y_jit)/y_jit
err_dev_ju = np.abs(y_dev_ju - y_ju)/y_ju

plt.figure()
plt.plot(y,yp,'o', label='solve_dde')