def test_id_to_svd(self, A, eps, rank):
        k = rank

        idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
        U, S, V = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
        B = U * S @ V.T.conj()
        assert_allclose(A, B, rtol=eps, atol=1e-08)
示例#2
0
def randsvd(A, eps_or_k):
	"""
	Interpolative decomposition computed using randomized SVD approach. It is a 
	wrapper for scipy.linalg.interpolative
	Parameters:
	----------
	eps_or_k : float or int
        	Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of
        	approximation.

	Returns:
	--------
       	u : {(m, k) } array
        	Unitary matrices. The actual shape depends on the value of
        	``full_matrices``. Only returned when ``compute_uv`` is True.
    	s : (k,) array
        	The singular values for every matrix, sorted in descending order.
    	v : {(n, k) } array
        	Unitary matrices. The actual shape depends on the value of
        	``full_matrices``. Only returned when ``compute_uv`` is True.

	Notes:
	------
		See scipy.linalg.interpolative function interp_decomp, id_to_svd

	"""	

	from scipy.linalg.interpolative import interp_decomp, id_to_svd
	if eps_or_k < 1:
		k, idx, proj = interp_decomp(A, eps_or_k)
		B = A[:,idx[:k]]
	else:
		idx, proj= interp_decomp(A, eps_or_k)
		k = eps_or_k

	B = A[:,idx[:k]]
	u, s, vh = id_to_svd(B, idx, proj)

	return u, s, vh
示例#3
0
    def check_id(self, dtype):
        # Test ID routines on a Hilbert matrix.

        # set parameters
        n = 300
        eps = 1e-12

        # construct Hilbert matrix
        A = hilbert(n).astype(dtype)
        if np.issubdtype(dtype, np.complexfloating):
            A = A * (1 + 1j)
        L = aslinearoperator(A)

        # find rank
        S = np.linalg.svd(A, compute_uv=False)
        try:
            rank = np.nonzero(S < eps)[0][0]
        except:
            rank = n

        # print input summary
        _debug_print("Hilbert matrix dimension:        %8i" % n)
        _debug_print("Working precision:               %8.2e" % eps)
        _debug_print("Rank to working precision:       %8i" % rank)

        # set print format
        fmt = "%8.2e (s) / %5s"

        # test real ID routines
        _debug_print("-----------------------------------------")
        _debug_print("Real ID routines")
        _debug_print("-----------------------------------------")

        # fixed precision
        _debug_print("Calling iddp_id / idzp_id  ...", )
        t0 = time.clock()
        k, idx, proj = pymatrixid.interp_decomp(A, eps, rand=False)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddp_aid / idzp_aid ...", )
        t0 = time.clock()
        k, idx, proj = pymatrixid.interp_decomp(A, eps)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddp_rid / idzp_rid ...", )
        t0 = time.clock()
        k, idx, proj = pymatrixid.interp_decomp(L, eps)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        # fixed rank
        k = rank

        _debug_print("Calling iddr_id / idzr_id  ...", )
        t0 = time.clock()
        idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddr_aid / idzr_aid ...", )
        t0 = time.clock()
        idx, proj = pymatrixid.interp_decomp(A, k)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddr_rid / idzr_rid ...", )
        t0 = time.clock()
        idx, proj = pymatrixid.interp_decomp(L, k)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        # check skeleton and interpolation matrices
        idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
        P = pymatrixid.reconstruct_interp_matrix(idx, proj)
        B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
        assert_(np.allclose(B, A[:, idx[:k]], eps))
        assert_(np.allclose(B.dot(P), A, eps))

        # test SVD routines
        _debug_print("-----------------------------------------")
        _debug_print("SVD routines")
        _debug_print("-----------------------------------------")

        # fixed precision
        _debug_print("Calling iddp_svd / idzp_svd ...", )
        t0 = time.clock()
        U, S, V = pymatrixid.svd(A, eps, rand=False)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddp_asvd / idzp_asvd...", )
        t0 = time.clock()
        U, S, V = pymatrixid.svd(A, eps)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddp_rsvd / idzp_rsvd...", )
        t0 = time.clock()
        U, S, V = pymatrixid.svd(L, eps)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        # fixed rank
        k = rank

        _debug_print("Calling iddr_svd / idzr_svd ...", )
        t0 = time.clock()
        U, S, V = pymatrixid.svd(A, k, rand=False)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddr_asvd / idzr_asvd ...", )
        t0 = time.clock()
        U, S, V = pymatrixid.svd(A, k)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddr_rsvd / idzr_rsvd ...", )
        t0 = time.clock()
        U, S, V = pymatrixid.svd(L, k)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        # ID to SVD
        idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
        Up, Sp, Vp = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
        B = U.dot(np.diag(S).dot(V.T.conj()))
        assert_(np.allclose(A, B, eps))

        # Norm estimates
        s = svdvals(A)
        norm_2_est = pymatrixid.estimate_spectral_norm(A)
        assert_(np.allclose(norm_2_est, s[0], 1e-6))

        B = A.copy()
        B[:, 0] *= 1.2
        s = svdvals(A - B)
        norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B)
        assert_(np.allclose(norm_2_est, s[0], 1e-6))

        # Rank estimates
        B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=dtype)
        for M in [A, B]:
            ML = aslinearoperator(M)

            rank_tol = 1e-9
            rank_np = np.linalg.matrix_rank(M, norm(M, 2) * rank_tol)
            rank_est = pymatrixid.estimate_rank(M, rank_tol)
            rank_est_2 = pymatrixid.estimate_rank(ML, rank_tol)

            assert_(rank_est >= rank_np)
            assert_(rank_est <= rank_np + 10)

            assert_(rank_est_2 >= rank_np - 4)
            assert_(rank_est_2 <= rank_np + 4)
示例#4
0
    def check_id(self, dtype):
        # Test ID routines on a Hilbert matrix.

        # set parameters
        n = 300
        eps = 1e-12

        # construct Hilbert matrix
        A = hilbert(n).astype(dtype)
        if np.issubdtype(dtype, np.complexfloating):
            A = A * (1 + 1j)
        L = aslinearoperator(A)

        # find rank
        S = np.linalg.svd(A, compute_uv=False)
        try:
            rank = np.nonzero(S < eps)[0][0]
        except:
            rank = n

        # print input summary
        _debug_print("Hilbert matrix dimension:        %8i" % n)
        _debug_print("Working precision:               %8.2e" % eps)
        _debug_print("Rank to working precision:       %8i" % rank)

        # set print format
        fmt = "%8.2e (s) / %5s"

        # test real ID routines
        _debug_print("-----------------------------------------")
        _debug_print("Real ID routines")
        _debug_print("-----------------------------------------")

        # fixed precision
        _debug_print("Calling iddp_id / idzp_id  ...",)
        t0 = time.clock()
        k, idx, proj = pymatrixid.interp_decomp(A, eps, rand=False)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddp_aid / idzp_aid ...",)
        t0 = time.clock()
        k, idx, proj = pymatrixid.interp_decomp(A, eps)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddp_rid / idzp_rid ...",)
        t0 = time.clock()
        k, idx, proj = pymatrixid.interp_decomp(L, eps)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        # fixed rank
        k = rank

        _debug_print("Calling iddr_id / idzr_id  ...",)
        t0 = time.clock()
        idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddr_aid / idzr_aid ...",)
        t0 = time.clock()
        idx, proj = pymatrixid.interp_decomp(A, k)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddr_rid / idzr_rid ...",)
        t0 = time.clock()
        idx, proj = pymatrixid.interp_decomp(L, k)
        t = time.clock() - t0
        B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        # check skeleton and interpolation matrices
        idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
        P = pymatrixid.reconstruct_interp_matrix(idx, proj)
        B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
        assert_(np.allclose(B, A[:,idx[:k]], eps))
        assert_(np.allclose(B.dot(P), A, eps))

        # test SVD routines
        _debug_print("-----------------------------------------")
        _debug_print("SVD routines")
        _debug_print("-----------------------------------------")

        # fixed precision
        _debug_print("Calling iddp_svd / idzp_svd ...",)
        t0 = time.clock()
        U, S, V = pymatrixid.svd(A, eps, rand=False)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddp_asvd / idzp_asvd...",)
        t0 = time.clock()
        U, S, V = pymatrixid.svd(A, eps)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddp_rsvd / idzp_rsvd...",)
        t0 = time.clock()
        U, S, V = pymatrixid.svd(L, eps)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        # fixed rank
        k = rank

        _debug_print("Calling iddr_svd / idzr_svd ...",)
        t0 = time.clock()
        U, S, V = pymatrixid.svd(A, k, rand=False)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddr_asvd / idzr_asvd ...",)
        t0 = time.clock()
        U, S, V = pymatrixid.svd(A, k)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        _debug_print("Calling iddr_rsvd / idzr_rsvd ...",)
        t0 = time.clock()
        U, S, V = pymatrixid.svd(L, k)
        t = time.clock() - t0
        B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
        _debug_print(fmt % (t, np.allclose(A, B, eps)))
        assert_(np.allclose(A, B, eps))

        # ID to SVD
        idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
        Up, Sp, Vp = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
        B = U.dot(np.diag(S).dot(V.T.conj()))
        assert_(np.allclose(A, B, eps))

        # Norm estimates
        s = svdvals(A)
        norm_2_est = pymatrixid.estimate_spectral_norm(A)
        assert_(np.allclose(norm_2_est, s[0], 1e-6))

        B = A.copy()
        B[:,0] *= 1.2
        s = svdvals(A - B)
        norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B)
        assert_(np.allclose(norm_2_est, s[0], 1e-6))

        # Rank estimates
        B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=dtype)
        for M in [A, B]:
            ML = aslinearoperator(M)

            rank_np = np.linalg.matrix_rank(M, 1e-9)
            rank_est = pymatrixid.estimate_rank(M, 1e-9)
            rank_est_2 = pymatrixid.estimate_rank(ML, 1e-9)

            assert_(rank_est >= rank_np)
            assert_(rank_est <= rank_np + 10)

            assert_(rank_est_2 >= rank_np)
            assert_(rank_est_2 <= rank_np + 10)