def test_seed_returns_identically(self): for A in self.test_matrices: for seed in self.seeds: sketch1 = clarkson_woodruff_transform(A, self.n_sketch_rows, seed=seed) sketch2 = clarkson_woodruff_transform(A, self.n_sketch_rows, seed=seed) if issparse(sketch1): sketch1 = sketch1.toarray() if issparse(sketch2): sketch2 = sketch2.toarray() assert_equal(sketch1, sketch2)
def test_seed_returns_identically(self): for A in self.test_matrices: for seed in self.seeds: sketch1 = clarkson_woodruff_transform( A, self.n_sketch_rows, seed=seed ) sketch2 = clarkson_woodruff_transform( A, self.n_sketch_rows, seed=seed ) if issparse(sketch1): sketch1 = sketch1.todense() if issparse(sketch2): sketch2 = sketch2.todense() assert_equal(sketch1, sketch2)
def test_sketch_dimensions(self): for A in self.test_matrices: for seed in self.seeds: sketch = clarkson_woodruff_transform(A, self.n_sketch_rows, seed=seed) assert_(sketch.shape == (self.n_sketch_rows, self.n_cols))
def test_sketch_dimensions(self): for A in self.test_matrices: for seed in self.seeds: sketch = clarkson_woodruff_transform( A, self.n_sketch_rows, seed=seed ) assert_(sketch.shape == (self.n_sketch_rows, self.n_cols))
def test_sketch_preserves_vector_norm(self): n_errors = 0 n_sketch_rows = int(np.ceil(2. / (0.01 * 0.5**2))) true_norm = np.linalg.norm(self.x) for seed in self.seeds: sketch = clarkson_woodruff_transform( self.x, n_sketch_rows, seed=seed, ) sketch_norm = np.linalg.norm(sketch) if np.abs(true_norm - sketch_norm) > 0.5 * true_norm: n_errors += 1 assert_(n_errors == 0)
def test_sketch_rows_norm(self): # Given the probabilistic nature of the sketches # we run the 'test' multiple times and check that # we pass all/almost all the tries n_errors = 0 seeds = [ 1755490010, 934377150, 1391612830, 1752708722, 2008891431, 1302443994, 1521083269, 1501189312, 1126232505, 1533465685 ] for seed_ in seeds: sketch = clarkson_woodruff_transform(self.dense_big_matrix, self.n_sketch_rows, seed_) # We could use other norms (like L2) err = np.linalg.norm( self.dense_big_matrix) - np.linalg.norm(sketch) if err > self.threshold: n_errors += 1 assert_(n_errors == 0)
def test_sketch_preserves_frobenius_norm(self): # Given the probabilistic nature of the sketches # we run the test multiple times and check that # we pass all/almost all the tries. n_errors = 0 for A in self.test_matrices: if issparse(A): true_norm = norm(A) else: true_norm = np.linalg.norm(A) for seed in self.seeds: sketch = clarkson_woodruff_transform( A, self.n_sketch_rows, seed=seed, ) if issparse(sketch): sketch_norm = norm(sketch) else: sketch_norm = np.linalg.norm(sketch) if np.abs(true_norm - sketch_norm) > 0.1 * true_norm: n_errors += 1 assert_(n_errors == 0)
def test_sketch_dimensions(self): sketch = clarkson_woodruff_transform(self.dense_big_matrix, self.n_sketch_rows) assert_(sketch.shape == (self.n_sketch_rows, self.dense_big_matrix.shape[1]))